• 제목/요약/키워드: Sound absorber

검색결과 36건 처리시간 0.029초

소형 경량판넬을 이용한 차음성능 영향요인별 음향감쇠계수 분석 (Characteristics of Sound Reduction Index through Small Sized Lightweight Panel)

  • 양홍석;김명준;정갑철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.138-147
    • /
    • 2007
  • Recently, framed structure is increasingly being used as apartment structure due to the advantages during remodeling. Therefore, the use of lightweight panel as separating wall is increasing. To construct lightweight panel structures with sound insulation performance appropriate to the conditions of each field, measurement of sound reduction index(SRI) through panel structures should be performed. In this study, measurement of SRI through 46 kinds of panel structures was performed in the condition of various factors such as surface density, air space and absorber. The result showed that SRI of panel structures was generally higher by increasing of surface density. In the case of double panel with no absorber, SRI at below critical frequency was gradually increased according to rise of air space. Double panel with absorber make remarkable improvement in SRI at low frequency, but there is a little difference compared with SRI of double panel with no absorber over critical frequency.

  • PDF

능동흡음재를 이용한 음파반사 제어기법 연구 (Study on Sound Reflection Control using an Active Sound Absorber)

  • 장우석;권대용
    • 한국음향학회지
    • /
    • 제28권8호
    • /
    • pp.806-814
    • /
    • 2009
  • 이 논문은 능동흡음재를 이용한 수중음향반사파 상쇄에 관한 연구이다. 능동흡음재는 평판형 구동센서와 수신센서로 몰딩되고 외부 제어기와 연결된 구조로 되어있다. 이 두 층의 센서와 피드백제어기는 하나의 피드백 루프를 이루며, 이 루프의 특징은 외부로부터 인가되는 입사파에 대해 음향 임피던스가 자동적으로 정합되어, 자동적으로 반사파를 상쇄하는 특성을 가진다. 능동흡음재의 전기 구조 음향의 다중물리특성은 1차원 전달함수로 모델링 되고, 운용주파수 대역에서 입사파에 대한 반사파가 최소화 되도록 제어기의 전달함수가 설정된다. 능동형 흡음재는 수동형 흡음재의 두께에 비하여 현저히 얇은 두께를 가지며, 간단한 아날로그 회로 제어기만으로도 넓은 주파수 대역에서 우수한 흡음특성을 보인다.

높은 입사 음압 및 설계 인자의 변화에 따른 미세 천공판 흡음 기구의 흡음 특성 (Absorption Characteristics of Micro-perforated Panel Absorber According to High Incident Pressure Magnitude and Variation of Geometric Parameters)

  • 박순홍;서상현
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.1059-1066
    • /
    • 2011
  • The micro-perforated panel absorber(MPPA) is one of promising noise control elements because of its applicability to extreme environments where general porous materials cannot be used. Since the MPPA is inherently non-porous sound absorber, it can be a good candidate of acoustic protection system of a space launcher. The overall sound pressure level inside payload fairings of commercial launch vehicles is so high(around 140 dB OASPL) that the conventional linear impedance model cannot be directly applied to the design of the acoustic protection systems. In this paper an acoustic impedance models of a micro-perforated panel absorber at high sound pressure environment were reviewed and the use of the impedance on the practical design of MPPAs was addressed. The variation of absorption characteristics of MPPA was discussed according to the design parameters, e.g., perforation ratio, the minute hole diameter, the thickness of MPP and the incident sound pressure level.

가진 음압 및 설계 인자에 따른 미세 천공판 흡음 기구의 흡음 특성 (Absorption Characteristics of Micro-perforated Panel Absorber According to Incident Pressure Magnitude and Its Geometric Parameters)

  • 박순홍;서상현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.178-185
    • /
    • 2011
  • The micro-perforated panel absorber (MPPA) is one of promising noise control elements because of its applicability to extreme environments where general porous materials cannot be used. Since the MPPA is inherently non-porous sound absorber, it can be a good candidate of acoustic protection system of a space launcher. The overall sound pressure level inside payload fairings of commercial launch vehicles is so high (around 140 dB OASPL) that the conventional linear impedance model cannot be directly applied to the design of the acoustic protection systems. In this paper an acoustic impedance models of a micro-perforated panel absorber at high sound pressure environment were reviewed and the use of the impedance on the practical design of MPPAs was addressed. The variation of absorption characteristics of MPPA was discussed according to the design parameters, e.g., perforation ratio, the minute hole diameter, the thickness of MPP and the incident sound pressure level.

  • PDF

자동차용 충격 흡수기의 동특성 연구 (A Study on Dynamic Characteristics of Automotive Shock Absorber)

  • 남경탁;황성원;신귀수
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.1-6
    • /
    • 2002
  • A dynamic characteristics of shock absorber in the various excitation is investigated experimentally. Work diagrams and characteristic curves are used as a experimental standard. The various excitation conditions temperature and noise are very important factors in associated with the reduction of damping force. It is found that the heat occurrence from shock absorber, the gas shock absorber is much higher than oil shock absorber and increased in high speed. As to the variation of damping force, there are no change when the speed is low but we fixed amount of variation by increasing speed and change of new and old decrease. The sound pressure of the swash noise from cycle of shock absorber, we compared with theory sound pressure by experiment.

소형 경량패널을 이용한 차음성능 영향요인별 음향감쇠계수 분석 (Characteristics of Sound Reduction Index through Small Sized Lightweight Panel)

  • 양홍석;정갑철;김명준
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1184-1194
    • /
    • 2007
  • Recently, framed structure is increasingly being used as apartment structure due to the advantages during remodeling. Therefore, the use of lightweight panel as separating wall is increasing. To construct lightweight panel structures with sound insulation performance appropriate to the conditions of each field, measurement of sound reduction index(SRI) through panel structures should be performed. In this study, measurement of SRI through 46 kinds of panel structures was performed in the condition of various factors such as surface density, air space and absorber. The result showed that SRI of panel structures was generally higher by increasing of surface density. In the case of double panel with no absorber, SRI at below critical frequency was gradually increased according to rise of air space. Double panel with absorber make remarkable improvement in SRI at low frequency, but there is a little difference compared with SRI of double panel with no absorber over critical frequency.

흡음률 평가방법의 KS 규격화 방안에 관한 연구 (The establishing Korean Industrial Standard of the sound absorber for use in bildings)

  • Lee, Tai-gang;Song, Min-Jung;Kim, Sun-Woo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.391.2-391
    • /
    • 2002
  • Recently Korean Industrial Standards has been revised and established newly accordance with the ISO system, especially ISO 140 series. This study aims to introduce and review ISO 11654 which contents rating of sound absorption, and then this study suggests to establish appropriate evaluating method and Korean Industrial Standard of the sound absorber for use in building.

  • PDF

건축물에 사용되는 흡음재의 흡음률 평가방법 고찰 (Rating of sound absorption - sound absorber for use in building)

  • 이태강;송민정;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1120-1125
    • /
    • 2002
  • Recently Korean Industrial Standards has been revised and established newly accordance with the ISO system, especially ISO 140 series. This study aims to introduce and review ISO l1654 which contents rating of sound absorption. It is available to establish appropriate evaluating method and Korean Industrial Standard of the sound absorber for use in building.

  • PDF

높은 입사 음압에서의 미세 천공판을 이용한 흡음 기구의 설계 (Design of a Micro-perforated Panel Absorber at High Incident Sound Pressure)

  • 박순홍;서상현;장영순
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.983-990
    • /
    • 2010
  • Reduction of acoustic loads of space launch vehicles can be achieved by acoustic absorbers satisfying strict cleanness requirements. This limited the use of general porous materials and requires non-porous sound absorbers. Micro-perforated panel absorbers(MPPA) is one of promising sound absorbers satisfying the cleanness requirement for launch vehicles. However, its applicability was limited to low sound pressure levels according to the acoustic impedance model of micro-perforated panels. In this paper the applicability of micro-perforated panel absorbers at high incident sound pressure was investigated in experimental ways. The absorption characteristics of a micro-perforated panel absorber was simulated according to its design variables, e.g., minute hole diameters and aperture ratios. It was shown that optimal design can be readily done by using proposed design charts. Experiments were conducted to measure acoustic properties of the designed micro-perforated panel absorbers. The results showed that acoustic resistance increases rapidly as incident sound pressure level does but change of acoustic reactance can be neglected in a practical point of view. This caused the decrease of peak value of absorption coefficient at high incident sound pressure level, but the amount of reduction can be accepted in practice. The major advantage of the micro-perforated panel absorber(wide absorption bandwidth) was still kept at high sound pressure level.

A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure

  • Wang, Yonghua;Xu, Chengyu;Wan, Yanling;Li, Jing;Yu, Huadong;Ren, Luquan
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.249-266
    • /
    • 2016
  • The interest of this article lies in the proposition of using bionic method to develop a new sound absorber and analyze the efficient of this absorber in a ski cabin. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The finite element simulation method with ACTRAN is applied to calculate the acoustic performance of the multi-layer absorber, the vibration modal of the ski cabin and the sound pressure level (SPL) near the skier's ears before and after pasting the absorber at the flour carpet and seats in the cabin. As expected, the SPL near the ears was significantly reduced after adding sound-absorbing material. Among them, the model 2 and model 5 showed the best sound absorption efficiency and the SPL almost reduced 5 dB. Moreover, it was most effctive for the SPL reduction with full admittance configuration at both the carpet and the seats, and the carpet contribution seems to be predominant.