• Title/Summary/Keyword: Sound Workers

Search Result 69, Processing Time 0.023 seconds

Sound Levels and Postural Body Sway during Standing (소음수준에 따른 신체자세동요의 변화)

  • Park, Sung-Ha;Lee, Seung-Won
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-15
    • /
    • 2006
  • Loss of postural balance can possibly lead to increased risk of slips and falls in work places. Present study was performed to investigate the effects of noisy environments on postural stability during standing. It is known that a sound is characterized by the frequency and pressure level of the sound. Therefore, effects of the frequency and pressure level on postural stability were of primary concern. Ten male subjects participated in the experiment. Subject's center of pressure(COP) position was collected on a force plate while they were exposed to different frequency and pressure levels of the sound. Measured COP was then converted into the length of postural sway path in both anterior-posterior(AP) and medio-lateral(ML) axis. Results showed that the length of sway path in AP axis was significantly affected by the frequency of sound. The length of sway path was lowest at frequency level of 2000Hz and increased below and above this frequency range. The sound pressure level, however, did not significantly affect the postural sway length in both AP and ML axis. The results imply that industrial workers in noisy environments should be aware that their abilities of postural balance can be disturbed significantly.

A Study on the noise working environment and occupational hearing impairment in the manufactoring industries (제조업 산업장의 소음환경과 직업성 난청에 관한 조사연구)

  • Lee, Chae-Eon;Lee, Jong-Tae;Son, Hye-Suk;Mun, Deok-Hwan;Jo, Byeong-Man;Kim, Seong-Cheon;Bae, Gi-Taek;Kim, Yong-Wan
    • 월간산업보건
    • /
    • s.5
    • /
    • pp.4-15
    • /
    • 1988
  • In order to proffer the fundamental data for the better working environment and the effective establishment of hearing conservation program on workers exposed to industrial noise, author assessed noise levels on the 42 noisy processes among 84 manufactures of 9 industries and measured noise gearing loss by the type of industries on 3,104 workers at these noisy processes from March, 1986 to Februry, 1987. The results were summarized as follows: 1. The averge of A-weight sound level of 23 processes(54.8%) and the avergae of sound level at each octave band of 14 processes(33.3%) exceeded the permissible exposure limits in 8 hours per day. 2. The noise level was the highest in process of cocking of ship building(109.1dBA), and followed by plating of steel rolling(104.3dBA), rivet of manufacture of motor vehicles(102.5dBA), shot of ship building(98.5dBA), aciding(95.7BA) and steel tubing(95.0dBA) of steel rolling, weaving of textiles(95.0dBA). 3. The permissible exposure time for the average of sound level at each octave band was only 30 minutes in the process of cocking of ship building, plating of steel rolling and rivet of manufacture of motor vehicles. 4. As a result of audiometric examination in 3,104 workers, the rate of hearing loss over 50dB at 4,000Hz was 7.3%(227 workers) and the rate of hearing loss over 41dB at 60average method was 2.9%(89 workers). 5. The prevalence of occupational hearing loss in ship building and manufacture of motor vehicle was 5.2% and it was the highest among prevalence of these 9 industries. 6. As a result of this suvery, the noise control and gearing conservation program were required especially in the industry of ship building and manufacture of motor vehicle.

  • PDF

The Effect of Occupational Noise Exposure on Serum Cortisol Concentration of Night-shift Industrial Workers: A Field Study

  • Zare, Sajad;Baneshi, Mohammad R.;Hemmatjo, Rasoul;Ahmadi, Saeid;Omidvar, Mohsen;Dehaghi, Behzad F.
    • Safety and Health at Work
    • /
    • v.10 no.1
    • /
    • pp.109-113
    • /
    • 2019
  • Background: In both developed and developing countries, noise is regarded as the most common occupational hazard in various industries. The present study aimed to examine the effect of sound pressure level (SPL) on serum cortisol concentration in three different times during the night shift. Methods: This case-control study was conducted among 75 workers of an industrial and mining firm in 2017. The participants were assigned to one of the three groups (one control and two case groups), with an equal number of workers (25 participants) in each group. Following the ISO 9612 standard, dosimetry was adopted to evaluate equivalent SPL using a TES-1345 dosimeter. The influence of SPL on serum cortisol concentration was measured during the night shift. The serum cortisol concentration was measured using a radioimmunoassay (RIA) test in the laboratory. Repeated measure analysis of variance and linear mixed models were used with ${\alpha}=0.05$. Results: The results indicated a downward trend in the serum cortisol concentration of the three groups during the night shift. Both SPL and exposure time significantly affected cortisol concentration (p < 0.0001, p < 0.0001). Conversely, age and body mass index had no significant influence on cortisol concentration (p = 0.360, p = 0.62). Conclusion: Based on the obtained results, increasing SPL will lead to enhancement of serum cortisol concentration. Given that cortisol concentration varies while workers are exposed to different SPLs, this hormone can be used as a biomarker to study the effect of noise-induced stress.

Experiment on the Perception of Fire Alarm Sound of Small Construction Site Workers (소규모 건설공사현장 작업자의 화재경보음 인지 실험)

  • Pil-Jae Moon;Seo-Young Kim;Ha-Sung Kong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.153-160
    • /
    • 2023
  • This research experiments on the workers' recognition of the fire alarm sound for sirens and portable loudspeakers in a small construction site. As a result of analyzing the siren alarm sound recognition from measuring on the 1st, 2nd, and 4th floors, the sound was more unrecognizable on the 4th floor than on the 1st, and 1 person on the 1st floor was unable to recognize all sounds. In the case of the 2nd floor, one person could not notice the alarm in the last 3rd trial, and another did not realize it all three times. For the 4th floor, 3 people demonstrated unrecognition in all 3 tests. As a result of analyzing the recognition of portable loudspeaker alarm sounds, 1 person could not recognize all sounds on the first floor. In the case of the 2nd floor, 2 people were confirmed to be unable to notice, and lastly, 4 people could not recognize all trials on the 4th floor. The subjects who didn't recognize the sound were unable to distinguish between portable loudspeaker alarm sound and work noise due to the workspace and obstacles.

Noise Generation Characteristic for Tunnel Construction Equipments (건설장비에 의한 터널작업의 소음환경 실태)

  • Jang, Jae-Kil;Kim, Kab Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.841-849
    • /
    • 2013
  • Workers engaged in construction works have been exposed to high levels of noise during their work in tunnels. Noise is one of the major health hazards for employees working in construction sites. The aim of this study is to evaluate the noise levels generating from tunneling equipments such as jumbo drills, backhoes, payloaders, shotcrete machines and service cars. Explosion and turbo fan noises were also monitored. A high precision sound level meter was introduced for measuring LAeq, LAFmax, LAFmin and LCpeak noises in 5 tunneling work sites that were located in Seoul, Kyunggi-do and Kangwon-do areas with NATM and shield methods. The highest noise was recorded by explosion(151.9 dB LCpeak) followed by jumbo drills of higher than 110 dB(A) LAeq. Backhoe normally generated 90~110 dB(A) LAeq while breaking work of rock showed additional around 5~15 dB(A). Noise exposure levels for payloader and shotcrete machine scored more than 90 dB(A) which might be a source of noise-induced hearing loss. Additional research in revealing noise levels from construction equipments operating in tunneling works may enhance the protection of workers who exposed to noise primarily at the sites.

A Study on Contribution Analysis using Operational Transfer Path Analysis based on the Correlation between Subjective Evaluation and Zwicker's Sound Quality Index for Sound Quality of Forklifts (지게차의 주관적 음질평가와 Zwicker 음질지수의 상관관계 및 전달경로분석법(OTPA)을 활용한 음질 기여도 분석)

  • Kim, Beom Soo;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2016
  • Recently, drivers have begun to regard comfort in the cabin as one of the most important factors in construction equipment like forklifts. Accordingly, it has become more important to design a forklift cabin with a better sound quality as well as lower sound level, which can make a driver more comfortable. In this paper, the correlation between subjective evaluation and Zwicker's sound quality index was analyzed through a blind test by a few workers in forklifts and other construction equipment in several countries. Correlation analysis showed that Loudness and Sharpness were ranked in sequence, and tendencies were different from country to country. Also, contribution analysis for Loudness and Sharpness using operational transfer path analysis (OTPA), which is widely used in the field of noise, vibration, and harshness (NVH), was performed. However, Loudness and Sharpness cannot be used with OTPA directly because there are no linear relationships between the sources and receivers. In this paper, both are calculated by applying the DIN 45631 method with a contribution rate (%) of 1/3 Octave Sound Pressure Level by OTPA method in addition to considering spectral masking.

Characteristics of Noise Exposure Level on Workers of Tunnel Construction Sites (일부 터널건설현장 근로자의 소음노출 수준에 대한 고찰)

  • Kim, Kab Bae;Jang, Jae-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.739-744
    • /
    • 2013
  • The aim of this study is to evaluate the noise level from the machines used for tunnel construction and to analyze the noise exposure level of workers engaged in tunneling works. The sound level meter and noise dosimeters was used for the monitoring of noise in the tunneling work sites. The average noise from jumbo drill was 113.0 dE(A), the noise from pay loader was 92.4 dB(A), the noise from backhoe was 99.9 dB(A) and the noise from shotcrete machine was 94.3 dE(A). The tunneling workers were exposed to 66.9~94.9 dB(A) of noise and other workers exposed to less than 90 dB(A) of noise. Jumbo drill operators were exposed to to 82.5~84.2 dB(A) of noise, backhoe operators were exposed to 70.2~94.9 dB(A) of noise, shotcrete machine operators were exposed to 68.2~74.7 dB(A) of noise and pay loader operators were exposed to 59.2~81.3 dE(A) of noise.

  • PDF

Establishment for Regulation Standards of Architectural Facility Noise Using Psycho-acoustic Experiment (청감실험을 이용한 건축 설비소음의 규제기준 설정)

  • Ju, Duck-Hoon;Yun, Jae-Hyun;Kim, Jae-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1001-1008
    • /
    • 2010
  • The architectural, facility makes the housing environment more pleasant, while too much noise coming from machinery room is detrimental to the workers physically and mentally. Therefore, more sound insulation and sound proof policies are increasingly required. However, as the annoyance caused by facility noise is influenced by various human listening characteristics as well as physical characteristics such as sound pressure level, it requires subjective evaluation characteristics through acoustic-psychological approach. For this purpose, the facility noise in the machinery room was actually measured and analyzed in the field to understand physical characteristics, and the correlation between physical evaluation value and psychological response value through listening test. Further, this study aims at presenting the data to set the standards of 'Just noticeable difference' of the facility noise together with reasonable evaluation with psychological reaction, through the grading of facility noise using trend formula. In the result, 13 stages of physical properties were forecasted for each evaluation method, together with 'Just noticeable difference' using the grading of architectural facility noise.

A Study on Psychological Effect of Natural Element in Rest Space of Office (오피스 휴게공간에서 자연요소의 심리적 효과에 관한 연구)

  • Kang, Min-Kyung;Lyu, Ho-Chang
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2004.11a
    • /
    • pp.84-87
    • /
    • 2004
  • The stress from the office environment comes from the most psychological things. Therefore, the purpose of this study is to research the psychological effect of natural element for office worker's psychological stability. This study is focused on the light, sound, air, temperature, plant, and water. Perception of these natural elements through the senses of sight, auditory, smell, and touch is effect on human body and mind directly. The application of natural elements provide a health of office workers. The result will show that, with application of the natural element, the rest space will be more powerful for health of workers. And also combination of natural element and geometric pattern will be very useful to prepare healing environment on the rest space

  • PDF

Environmental Sound Classification for Selective Noise Cancellation in Industrial Sites (산업현장에서의 선택적 소음 제거를 위한 환경 사운드 분류 기술)

  • Choi, Hyunkook;Kim, Sangmin;Park, Hochong
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.845-853
    • /
    • 2020
  • In this paper, we propose a method for classifying environmental sound for selective noise cancellation in industrial sites. Noise in industrial sites causes hearing loss in workers, and researches on noise cancellation have been widely conducted. However, the conventional methods have a problem of blocking all sounds and cannot provide the optimal operation per noise type because of common cancellation method for all types of noise. In order to perform selective noise cancellation, therefore, we propose a method for environmental sound classification based on deep learning. The proposed method uses new sets of acoustic features consisting of temporal and statistical properties of Mel-spectrogram, which can overcome the limitation of Mel-spectrogram features, and uses convolutional neural network as a classifier. We apply the proposed method to five-class sound classification with three noise classes and two non-noise classes. We confirm that the proposed method provides improved classification accuracy by 6.6% point, compared with that using conventional Mel-spectrogram features.