• Title/Summary/Keyword: Sound Source

Search Result 1,201, Processing Time 0.027 seconds

Korean Industrial Standard of “Rating of floor impact sound insulation for impact source in building and of building elements” (바닥충격음 차단성능 평가방법의 KS 규격화 방안)

  • 송민정;장길수;김흥식;김선우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.383-386
    • /
    • 2001
  • The KS of “Measurements of impact sound insulation of floors” was established before the years. But the KS of “Rating of floor impact sound insulation for impact source in building and of building elements” is not founded yet. To establish the rating measurement of floor impact sound insulation. The studies on the rating method of domestic floor system of impact sound insulation and response of its inhabitant’s were reviewed. And the rating method of ISO’s and JIS’s were studied in this consideration. The result of this study, KS of “Rating of floor impact sound insulation for impact source in building and of building elements” is proposed.

  • PDF

A study for the- reconstruction of free field sound source from the measured data in a closed wall by using Boundary Element Method (경계요소법을 이용한 음원의 자유음장 복원에 대한 연구)

  • Choi, Han-Lim;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1747-1751
    • /
    • 2000
  • It is well known that acoustic signals, even measured in an anechoic chamber, can be contaminated due to the wall interference. Therefore, it is necessary to reconstruct the original signal from the measured data, which is very critical for the case of measurement of source signal in a water tunnel. In this thesis, new methods for the reconstruction of sound sources are proposed and validated by using Boundary Element Method from measured data in a closed space. The inverse Helmholtz integral equation and its normal derivative are used for the reconstruction of sound sources in a closed space. An arbitrary Kirchhoff surface over the sources is proposed to solve the surface information instead of direct solution for the source. Although sound sources are not directly known by the inverse Helmholtz equation, the original sound source of pressure-field outside of the wall can be indirectly obtained by using this new method.

  • PDF

Identification of Sound Source Location Generated by Shock Wave for Medical Treatment (의료용 충격파에 의해 발생하는 음원 위치의 확인)

  • 장윤석;김석재
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.453-458
    • /
    • 2003
  • When the piezoelectric extracorporeal shock wave lithotripter is operated. sounds are generated. In this paper, we present a fact that the sounds are radiated undoubtedly from the object to be hit by the shock waves. For this results. we use the method to identify the sound source location of the radiated sounds by estimating the distance and the bearing from the sound source using one hydrophone. In addition. we investigate the relation between the radiated sounds and the vibrations of the objects using bronze models of disc type with clear vibrating characteristics and present the results of experiments to be analyzed.

An Experimental Study or the Prediction Method of Floor Impact Sound Insulation Performance in Apartment House Using Impedance Method(II) (임피던스법을 이용한 공동주택 바닥 충격음 차음성능 예측방법에 관한 실험 적 연구(II) - 경량 표준충격원을 중심으로 -)

  • 김재수;장길수;김선우
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 1992
  • In the previous paper, we report a practical floor impact sound level prediction method for a heavyweight impact source(Tire), soft impact source such as children jumping and running. According to these results, the calculated value and the measured value correspond comparatively well, regardless of differences in the floor structures. And the floor impact sound for a heavyweight impact source, soft source was strongly influenced by structural factors such as floor slab stiffness and peripheral support conditions. But the floor impact sound for a light impact source (Tapping machine), hard impact source was influenced by resilient layers, composed of multi-layer in floor structures. Thus, In this paper, 4 actual floor structures, all with differing resilient layers, were calculated using impedance method. When these calculation values were compared with the measured values, approximately all the values fell with one rank of the sound insulation grade, reference curve(L curve) by the JIS standard. So, a sample of measured values and calculated values from floor structures is presented to show the accuracy and appropriateness of the impedance method in domestic.

  • PDF

Evaluation of uncertainty in measurement of floor impact sound insulation of buildings using standard heavy impact source (표준중량충격원을 이용한 건축물의 바닥 충격음 차단성능 측정불확도 평가)

  • Yong-Bong Lee;Hyok-Je Kwon;Chang-Whan Kim;Man-Hee Cho;Hang Kim;SungSoo Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.143-151
    • /
    • 2023
  • In this paper, a method for evaluating the measurement uncertainty is proposed when measuring of floor impact sound insulation of buildings using standard heavy impact source. In addition to the effect of repeated measurements, several other factors such as measurement location, impact location, equipment used for sound pressure measurement, and heavy impact source, were considered. A mathematical model for the average maximum impact sound level and the uncertainty evaluation method for each factor were proposed. The present proposed method was applied to measurement results to evaluate the average maximum impact sound pressure level and the measurement uncertainty.

Sound Source Localization and Separation for Emotional Robot (감성로봇을 위한 음원의 위치측정 및 분리)

  • 김경환;김연훈;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.116-123
    • /
    • 2003
  • These days, the researches related with the emotional robots are actively investigated and in progress. And human language, expression, action etc. are merged in the emotional robot to understand the human emotion. However, there are so many sound sources and background noise around the robot, that the robots should be able to separate the mixture of these sound sources into the original sound sources, moreover to understand the meaning of voice of a specific person. Also they should be able to turn or move to the direction of a specific person to observe his expression or action effectively. Until now, the researches on the localization and separation of sound sources have been so theoretical and computative that real-time processing is hardly possible. In this reason for the practical emotional robot, fast computation should be realized by using simple principle. In this paper the methods for detecting the direction of sound sources by using the phase difference between peaks on spectrums, and the separating the sound sources by using fundamental frequency and its overtones of human voice, are proposed. Also by using these methods, it is shown that the effective and real-time localization and separation of sound sources in living room are possible.

Considering Microphone Positions in Sound Source Localization Methods: in Robot Application (로봇 플랫폼에서 마이크로폰 위치를 고려한 음원의 방향 검지 방법)

  • Kwon, Byoung-Ho;Kim, Gyeong-Ho;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1080-1084
    • /
    • 2007
  • Many different methods for sound source localization have been developed. Most of them mainly depend on time delay of arrival (TDOA) or on empirical or analytic head related transfer functions (HRTFs). In real implementation, since the direct path between a source and a sensor is interrupted by obstacles as like a head or body of robot, it has to be considered the number of sensors as well as their positions. Therefore, in this paper, we present the methods, which are included sensor position problem, to localize the sound source with 4 microphones to cover the 3D space. Those are modified two-step TDOA methods. Our conclusion is that the different method has to be applied in case to be different microphone position on real robot platform.

  • PDF

Evaluations on isolation method of floor impact sounds by real impact source (실충격원을 고려한 바닥충격음 저감방안의 평가)

  • Yoo, Seung-Yup;Lee, Pyung-Jik;Jeong, Young;Jeon, Jin-Yong;Ryu, Jong-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.366-370
    • /
    • 2006
  • In this study, characteristics of impact force and impact sound of impact source such as bang machine, impact ball, and children's jumping were review. Results of review showed that impact ball has most similar characteristic to real impact sources in terms of objective properties such as impact force and impact sound. The effects of various isolator on floor impact sound were also investigated in apartment building and test facilities building using bang machine an impact ball. From the field measurement, it was found that the difference in reduction sound level between bang machine and impact ball was relatively large and the reduction sound level by impact ball was much larger than bang machine.

  • PDF

Study on the Sound Radiaton Characteristics of Trains by Sound Intensity Method (음향 인텐시티법을 이용한 주행열차의 음향방사특성의 검토)

  • 주진수;김재철
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.603-608
    • /
    • 1998
  • In order to obtain basic data for the prediction of railway noise propagation, the noise radiation characteristics (source position, radiation directivity, etc) of trains were measured by using the sound intensity method. The measurements were performed at a side of railway by setting an intensity-probe array. As the measurement results, it was found that rolling noise due to interaction between wheel and rail and motor noise radiation from the lower part of train are dominant. The location of main sound sources can be described as being at the height of 0.1m in the center line of track, and the radiation directivity in the cross section of actually running trains are presented as a dipole source.

  • PDF

Noise source localization using comparison between candidate signal and beamformer output in time domain (시간 영역의 빔출력과 후보 신호 사이의 비교를 통한 소음원의 위치 추정)

  • Kim, Koo-Hwan;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.543-543
    • /
    • 2010
  • The objective of this research is estimating the location of interested sound source by using the similarity between a beamformer output in time domain and the candidate signal. The waveform of beamformer output at the location of sound source is similar with the waveform emitted by that source. To estimate the location of sound source by using this feature, we define quantified similarity between candidate signal and beamformer output. The candidate signal describes the signal which is generated by interested source. In this paper, similarity is defined by four methods. The two methods use time vector comparison, and the other two methods use time-frequency map or linear prediction coefficients. To figure out the results and performance of localization by using similarities, we demonstrate two conditions. The one is when two pure tone sources exist and the other condition is when several bird sounds exist. As a consequence, inner product with two time-vectors and structural similarity with spectrograms can estimate the locations of interest sound source.

  • PDF