• Title/Summary/Keyword: Sound Sample

Search Result 173, Processing Time 0.023 seconds

ENHANCEMENT THE SOUND TRANSMISSION LOSS OF POROELASTIC LININGS

  • Song, B.Heuk-Jin;Bolton, J.Stuart
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.606-611
    • /
    • 2000
  • It has been noted that the low frequency absorption coefficient of a porous sample placed in a standing wave tube is affected by the nature of the sample's edge constraint. The edge constraint has the effect of stiffening the solid phase of the sample, which itself can be strongly coupled to the material's fluid phase, and hence the incident sound field, by viscous means at low frequencies. In recent work it has also been shown that such a circumferential constraint causes the low frequency transmission loss of a layer of fibrous material to approach a finite low frequency limit that is proportional to the flow resistance of the layer and which is substantially higher than that of an unconstrained sample of the same material. However, it was also found that the benefit of the circumferential edge constraint was reduced in a transitional frequency range by a shearing resonance of the sample. Here it will be shown that the effect of that resonance can be mitigated or eliminated by adding additional axial and radial constraints running through the sample. It will also be shown that the constraint effect can be modeled closely by using a finite element procedure based on the Biot poroelastic theory. Implications for low frequency barrier design are also discussed.

  • PDF

A Study on the Sound Absorption Coefficient by Varying Sample Size (시편의 크기에 따른 흡음계수 변화 연구)

  • 정성수;이우섭;조문재;서상준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.83-88
    • /
    • 2001
  • The sound absorption coefficient of glass wool (bulk density of 48 kg/m:1 and 32 kg/m7) was measured by reverberation room method as varying their cross-sectional area. The results show that the absorption is larger for smaller samples because of edge effect. The absorption coefficient with two different kinds of sources. 1/.7-octave band and while noise, gives similar values.

  • PDF

A Study on the Sound Transmission Loss Measurement of Sound Isolation Sheets (차음시트의 음향투과손실 측정에 관한 연구)

  • Lee, Dong-Hoon;Kang, Moon;Lee, Ju-Weon;Jung, Gab-Cheol;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.409-414
    • /
    • 2000
  • A new impedance tube method is presented for the measurement of transmission loss of sound isolation sheets. The two-microphone method based on the sound decomposition theory proposed by Seybert and Ross is reviewed in this impedance tube method, which has been used for the determination of absorption coefficient of absorptive materials as well as transmission loss of automotive mufflers. Sound transmission losses for rubber, polyvinyl and asphalt sheets are measured in an impedance tube and reverberation room facility, respectively. By comparing two measurement methods, the reliability of impedance tube method used in this study is validated. From the experimental results, it is shown that the accuracy of sound isolation capability obtained by the impedance tube method depends upon the microphone spacing and the distance of the first microphone from the test sample surface.

  • PDF

Development of Sound Isolation Sheets with Compound Materials (복합재료를 이용한 시트형 차음재 개발)

  • Lee, Dong-Hoon;Lee, Tae-Kun;Cheong, Seong-Kyun;Lee, Hee-Won;Kang, Moon;Kim, Young-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.415-420
    • /
    • 2000
  • This paper describes a part of the results obtained in the process of the development of thin sound isolation sheets filled mineral compound powder with PVC. The raw materials used are pyrophillite, pottery stone and graphite. The physical properties such as the crystal structures, compositions, and specific gravities, etc. of raw materials are analyzed and discussed from a point of view of sound isolation material. From the analysis of experimental results, the particle size and the additive amount of mineral compound powder for manufacturing sample isolation sheets are decided. The resistant capability against fire of sound isolation sheets including mechanical, thermal and physical properties is tested. The transmission loss measuremenst of sound isolation sheets are performed using two-microphone method in an impedance tube. It is shown that the sound isolation capability of thin sheets has an excellent performance in excess of the object of development.

  • PDF

Sound Quality Evaluation and Development of Sound Quality Index for High-Speed Train Interior (고속철도의 실내 음질평가와 음질인덱스 개발)

  • Park, Buhm;Choi, Sung-Hoon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.827-827
    • /
    • 2009
  • Complaints against high-speed train interior noise have been increasing as a number of high-speed train passenger grows bigger. It is very difficult to analyze characteristics of high-speed train interior noise using sound pressure level only. It is requested to consider how the public response change for each high-speed train interior noise. This study presents evaluation of the sound quality for interior noise of KTX-II using Zwicker parameters. Characteristic of loudness and sharpness is different between noise samples depending on operation condition. The noise sample that recorded when the high-speed train passed through tunnel section is more louder and sharper.

  • PDF

Features Analysis of Speech Signal by Adaptive Dividing Method (음성신호 적응분할방법에 의한 특징분석)

  • Jang, S.K.;Choi, S.Y.;Kim, C.S.
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.63-80
    • /
    • 1999
  • In this paper, an adaptive method of dividing a speech signal into an initial, a medial and a final sound of the form of utterance utilized by evaluating extreme limits of short term energy and autocorrelation functions. By applying this method into speech signal composed of a consonant, a vowel and a consonant, it was divided into an initial, a medial and a final sound and its feature analysis of sample by LPC were carried out. As a result of spectrum analysis in each period, it was observed that there existed spectrum features of a consonant and a vowel in the initial and medial periods respectively and features of both in a final sound. Also, when all kinds of words were adaptively divided into 3 periods by using the proposed method, it was found that the initial sounds of the same consonant and the medial sounds of the same vowels have the same spectrum characteristics respectively, but the final sound showed different spectrum characteristics even if it had the same consonant as the initial sound.

  • PDF

Development of a Practical Two-Microphone Impedance Tube Method for Sound Transmission Loss Measurement of Sound Isolation Materials

  • Ro, Sing-Nam;Hwang, Yoon;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.105-113
    • /
    • 2003
  • This study developed a practical two-microphone impedance tube method to measure the sound transmission loss of sound isolation materials without the use of an expensive reverberation room or an acoustic intensity probe. In order to evaluate the validation and applicability of the two-microphone impedance tube method, sound transmission losses for several sound isolation materials with different surface density and bending stiffness were measured, and the measured values were compared with the results from the reverberation room method and the theory. From the experimental results, it was found that the accuracy of sound transmission loss obtained by the impedance tube method depends upon the diameter size of the impedance tube (i.e., tested sample size). For sound isolation materials having relatively large bending stiffness such as acryl, wood, and aluminum plates, it was found that the impedance tube method proposed by this study was not valid to measure the sound transmission loss. On the other hand, for sound isolation materials having relatively small bending stiffness such as rubber, polyvinyl, and asphalt sheets, the comparisons of transmission loss between the results from the impedance tube method and the theory showed a good agreement within the range of the frequencies satisfying the normal incidence mass law. Therefore, the two-microphone impedance tube method proposed by this study can be an effective measurement method to evaluate the sound transmission loss for soft sound isolation sheets having relatively small bending stiffness.

A Basic Study on the Variation of Temperature Characteristics for Attenuation Coefficient and Sound Velocity in Biological Tissues

  • Park, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.273-282
    • /
    • 1993
  • This study is concerned with the temperature dependence characteristics of ultrasound parameters in biological tissues, which are basic on the noninvasive deep body temperature estimation. Used parameters are ultrasonic attenuation coefficient and sound velocity In order to accomplishment our purpose, several signal processing methods were used. Attenua4iorl coefficient was estimated by spectral difference method and sound velocity was estimated by P-P method. And we also examined these methods through a series of IN VITRO experi mentis that used tissue-mimicking phantom samples and biological tissue samples. In order to imitate the biological soft tissue two kinds of phantom samples are used, one is agar phantom sample which is composed of agar, graphite, N-propyl alcohol and distilled water, and the other is fat phantom sample which is composed of pure animal fat. And the ultrasound transmission mode and reflection mode experiments are performed on the pig's spleen, kidney and fat. As a result, it is found that the temperature characteristics are uniform in case of phan- tom samples but not in biological tissues because of complicate wave propagation within them. Consequently, the possibility of temperature measurement using ultrasound on biological tissue is confirmed and its results may contribute to the establishment of reference values of internal temperature measurement of biological tissues.

  • PDF

Investigation on the Effects of Air-Damping on the Sound Absorption Coefficients Measured in the Tube (관내법 시험시 Air-Damping이 흡음률에 미치는 영향 고찰)

  • 정완섭;서재갑;황재호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.443-446
    • /
    • 1997
  • This paper raises issues in testing the absorption coefficients of sound-absorptive samples in the standing wave tube according to the Korean standard of KS F 2814. The code does not consider any effect of air-damping during test. This limitation has been shown to yield much variation of sound absorption coefficients for recent sample tests whose coefficients are less than 10 %. An improved method of calculating the sound absorption coefficients is proposed in this work and its effectiveness in real test is also illustrated. Finally, the guide line for the modification of our national standard code KS F 2814 is suggested for the future.

  • PDF

A Study on the Sound Absorption Coefficient by Varying Sample Size (시편의 크기에 따른 흡음계수 변화 연구)

  • Jung, Sung-Soo;Lee, Woo-Seop;Jho, Moon-Jae;Suh, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.185-190
    • /
    • 2000
  • The sound absorption coefficient of glass wool (bulk density of 48 kg/$m^3$ and 32 kg/$m^3$) was measured by reverberation room method as varying their cross-sectional area. The results show that the absorption is larger for smaller samples because of edge effect. The absorption coefficient with two different kinds of sources, 1/3-octave band and white noise, gives similar values.

  • PDF