• Title/Summary/Keyword: Sound Pressure

Search Result 1,360, Processing Time 0.029 seconds

Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in Mock-up Test Rooms (수음실 잔향시간 변화에 따른 중량 충격음 레벨 특성 - 실험실 환경을 중심으로 -)

  • Jeong, Jeong Ho;Lee, Byung Kwon;Yeon, Jun Oh;Jeon, Jin Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2014
  • Floor impact sound in high-rise apartment building became one of social problems. A lot of civil complaints on floor impact sound occur continuously and the number of disputes between neighbors in small and aged apartment buildings is increasing. Interests on heavy-weight impact sound pressure level measurement and evaluation method is increased. Previous study reported that heavy-weight impact sound level was changed by the sound field condition of receiving reverberation chamber. In this study, heavy-weight impact sound pressure level change by the receiving sound field condition was measured in standard test facility and mock-up test room. These two experimental conditions were designed to simulate averaged living room of common apartment units. By the change of sound absorption power in receiving room, heavy-weight impact sound pressure level in most of frequency bands were changed in standard test facility and mock-up room. Normalized maximum sound pressure level regulated in ISO 16032 showed wider range of heavy/soft impact sound pressure level. Heavy/soft impact sound pressure level change was became smaller by the application of standardized maximum sound pressure level and ISO/CD 10140-3 Amd 2 method. In the case of standardized maximum sound pressure level, absolute sound pressure level changed. From these results, receiving sound field correction method regulated in ISO/CD 10140-3 Amd 2 is needed for the precision measurement and evaluation of heavy-weight impact sound.

Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in a Reverberation Chamber (수음실 잔향 시간변화에 따른 바닥충격음레벨 특성 - 잔향실을 중심으로 -)

  • Jeong, Jeong Ho;Kim, Jeong Uk;Jeong, Jae Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.274-281
    • /
    • 2013
  • Field measurement method of heavy/soft impact sound pressure level which is regulated in JIS and ISO has been using in Korea, Japan and Canada. It is reported that heavy/soft impact sound pressure level was varied by the sound field condition of receiving room such as sound absorption power and room volume. In this study, it is checked that heavy/soft impact sound pressure level was affected by the receiving sound field condition. Rubber ball and bang machine sound pressure level was measured in the vertically connected reverberation chamber. In oder to check the effect of receiving sound field on heavy/soft impact sound pressure, sound absorption power was changed with polyester sound absorption blankets with air space and glass wool. The reverberation time at 1 kHz band was changed from 10 s to 0.2 s by sound absorption material. Rubber ball sound pressure level measured without sound absorption material was 58 dB in $L_{i,Fmax,AW}$, but the level was 46 dB with sound absorption treatment. From this result, it is confirmed that sound field correction method is needed in the heavy/soft impact sound pressure level measurement method using bang machine and rubber ball.

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF

Sound Field Reproduction by Manipulating Sound Pressure on Boundary (경계의 음압 제어를 통한 음장 재현 방법론 제안)

  • Jang, Ji-Ho;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.555-558
    • /
    • 2005
  • If sound pressure values on boundary are available, then we can predict the sound field in it. Similarly, we can reproduce sound field by manipulating sound pressure values on boundary. In this paper, a noble method of sound reproduction using this concept is introduced and evaluated for the case in which sound field is 2-D half-infinite plane by computer simulation.

  • PDF

The Estimation of Sound Attenuation Caused by Duct Silencer Using Sound Intensity Method (음향인텐시티법을 이용한 공조 덕트소음기의 감음성능평가방법에 관한 연구)

  • Kim, Seok-Hong;Son, Jang-Yeol;O, Jae-Eung;Kim, Yeo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.54-61
    • /
    • 1987
  • This paper is to suggest the test method of sound attenuation caused by absorptive duct silencer using sound intensity method in field. In order to estimate sound attenuation, sound power being radiated from sound power source and duct exhaust terminal was measured by the sound pressure method and sound intensity method in semianechoic and common room. The results of the measured sound attenuation values by sound intensity method are more similar to those of theoretical calculation than those by the sound pressure method. In addition, sound intensity method is much less influenced by sound field condition or continuous background noise than the sound pressure method.

  • PDF

An Experimental Study to Improve Measurement Reliability for the Airborne Sound Insulation Performance by Laboratory Test (실험실 실험을 통한 벽체 차음성능 측정의 신뢰성 향상을 위한 실험적 연구)

  • Kim, Hang;Park, Hyeon Ku;Ku, Hee Mo;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.35-44
    • /
    • 2014
  • Sound pressure levels in the receiving room while testing airborne sound insulation performance are varied by the measuring points. This may increase the measurement error, then decrease the measurement reliability. With this reason the research has carried out on the method to reduce deviations of sound pressure level in the ISO type rectangular laboratory focusing on the measurement of airborne sound insulation performance. Tests were made to see the effect of sound absorption in the receiving room, loudspeaker locations, microphones locations and flanking transmission path. Consequently, it was resulted that sound absorption in the receiving room and the loudspeaker location have influence on the sound level deviations especially in the low frequency. The microphone location was very important to get measurement reliability. The effective measuring point, which the sound level difference with average sound pressure level is within 2 dB, could yield most reliable average sound pressure level. Therefore it is necessary to find the effective measuring points in the receiving room. Flanking transmission path should be sealed using sound absorber or magnet etc. to prevent from lowering the sound insulation performance.

Constructed Sound Field of an Induction Motor Using Cylindrical Acoustic Holography (원통형 음향 홀로그래피를 이용하여 구성한 유도전동기의 방사 음장)

  • 김시문;김양한
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.919-929
    • /
    • 1997
  • Induction motors are used in many areas to transform electrical energy to mechanical energy. In the design of an induction motor, not only energy efficiency but also noise becomes an important factor. To effectively address the noise problem, it will be convenient if one can see where and how noise is generated and propagated. In this study sound radiation by an induction motor is visualized using cylindrical acoustic holography. To minimize the bias error by window effect Minimum Error Window(MEW) is used. Its performance is verified by numerical simulations. Based on these theoretical understanding, sound pressure measurement with an induction motor are performed. Not only sound radiation are visualized but sound pressure level and sound power level are also estimated. Results show that the main source is located at nearly bottom part of the motor and the total sound pressure level is 49dB, which satisfies the guideline value suggested by the KS C 4202.

  • PDF

Estimation of damage for composite laminates using sound pressure (음압을 이용한 복합 적층판의 손상평가)

  • Kim, Sung-Joon;Lee, Sang-Wook;Chae, Dong-Chul;Kim, Sung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.503-507
    • /
    • 2004
  • The radiated sound pressure induced by low-velocity impact is obtained by solving the Rayleigh integral equation. This paper established the sound analysis procedure using impact analysis model. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. The impact response is computed using the spring-mass model. And the influence of damage on the sound pressure and impacted force history of laminated were investigated. The results show that both radiated sound pressure and impact force history are strongly influenced by damage on laminated.

  • PDF

Case study on the Prediction of Underwater Sound Pressure Level by Blasting (발파에 의한 수중음압레벨 예측 사례연구)

  • Park, Jeong-Il;Kang, Choo-Won;Noh, Young-Bae;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • Most of the blast pollution that causes complaints is noise and vibration. Hence, special attentions need to be paid to controlling the underwater noise in designing blasting for those areas. This study estimated underwater sound pressure using distance from blasting and charge per delay and underwater sound pressure level using the underwater sound pressure. To identify the validity of the estimated value, the study demonstrated the results at other areas and compared actual results with estimated results.

A Study on the Airborne Noise of the Small Fishing Boats (소형어선의 소음에 관한 연구)

  • Yang, Yong-Su;Jung, Kong-Heun;Seo, Du-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.4
    • /
    • pp.412-417
    • /
    • 1992
  • In full-speed cruising, the airborne sound pressure levels are measured from 11 small fishing boats operated around Cheju Island. In these measurement, 9 measuring positions are selected in each fishing boats. The results of measurements and analyses are as follows: 1. The sound pressure levels in FRP boats are higher than those in wooden boats. 2. The highest sound pressure level is 112dB(A) at the engine room in C boat, while the lowest one is 72dB(A) at the front deck in K boat. 3. The highest sound pressure level is shown to be in the frequency band less than 500Hz. 4. The highest sound pressure level is shown to be in the frequency band less than 500Hz. 5. Through all 9 positions, the sound pressure levels are higher in B and C boat and lower in E and K boats.

  • PDF