• 제목/요약/키워드: Sound Inten sity

검색결과 2건 처리시간 0.014초

가진에 의한 승용차 타이어의 음향방사특성에 관한 실험적 연구 (An Experimental Study on Sound Radiation Characteristics of Radial Tire for a Passenger Car Due to Excitation)

  • 김병삼;이태근;홍동표
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2426-2436
    • /
    • 1993
  • Vibration characteristics of a tire play an important role to judge a ride conformability and sound quality for a passenger car. In this study, the experimental investigation for the sound radiation of a radial tire has been examined. Based on the sound intensity techniques, the sound pressure field and the sound radiation are measured. It turns out that air pressure in tire, tread patterns, and aspect ratio of the tire govern the sound radiation characteristics. Then a numerical analysis for the tire element is conducted. During analysis, the tire element is modelled as an elastic ring. The comparison shows that the numerical output correlates to the experimental data.

평면파 입사시 신경회로망을 이용한 회절현상의 역모델링 (The Inverse Modeling of Diffraction Phenomena under Plane Wave Incidence using Neural Network)

  • 나희승
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1175-1182
    • /
    • 2000
  • Diffraction systematically causes error in acoustic measurements. Most probes are designed to reduce this phenomenon. On the contrary, this paper proposes a spherical probe a] lowing acoustic inten sity measurements in three dimensions to be made, which creates a diffracted field that is well-defined, thanks to analytic solution of diffraction phenomena. Six microphones are distributed on the surface of the sphere along three rectangular axes. Its measurement technique is not based on finite difference approximation, as is the case for the ID probe but on the analytic solution of diffraction phenomena. In fact, the success of sound source identification depends on the inverse models used to estimate inverse diffraction phenomena, which has nonlinear properties. In this paper, we propose the concept of nonlinear inverse diffraction modeling using a neural network and the idea of 3 dimensional sound source identification with better performances. A number of computer simulations are carried out in order to demonstrate the diffraction phenomena under various angles. Simulations for the inverse modeling of diffraction phenomena have been successfully conducted in showing the superiority of the neural network.