• Title/Summary/Keyword: Sound Identification

Search Result 238, Processing Time 0.022 seconds

Development of Rumbling Index and its Identification (럼블링 음질 인덱스와 음질요소 관계 규명)

  • 김병수;박동철;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.997-1002
    • /
    • 2004
  • Rumbling sound is one of the most important interior sound of a passenger car. The conventional rumbling noise research was focused on the reduction of the A-weighted sound pressure level. However A-weighted sound pressure level can not give the whole story about the rumbling sound of a passenger car. In this paper, we employed sound metric which is the subjective parameter used in psycoacoustics. According to recent research results, the relation between sound metrics and subjective evaluation is very complex and has nonlinear characteristics. In order to estimate this nonlinear relationship, artificial neural network theory has been applied to derivation of sound quality index for rumbling sound of a passenger car.

  • PDF

Acoustic Identification of Inner Materials in a Single-layer Cylindrical Shell with Resonance Scattering Theory (공명 산란 이론을 이용한 단일층 원통형 껍질 내부 물질의 음향 식별)

  • Jo, Young-Tae;Kim, Wan-Gu;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2015
  • Acoustic identification of inner materials in a single-layer cylindrical shell is investigated with acoustic resonance theory. The theoretical resonance peak frequencies for a cylindrical shell are little affected by the density variation, but remarkably changed by the sound speed variation of inner materials. Such acoustic dependency can be utilized to identify inner materials in a cylindrical shell. Acoustic resonance spectrogram for a single-layer cylindrical shell is theoretically plotted as functions of normalized frequency and sound speed of inner materials. The inner materials can be acoustically identified by overlapping acoustic resonance peaks from measured backscattering sound field on the spectrogram. To experimentally confirm this method, backscattering sound field of cylindrical shell filled with water, oil or ethylene glycol was measured in water tank. The inner materials could be identified by acoustic resonance peaks of the backscattering sound field monostatically measured with a transduce of 1.05 MHz center frequency.

Development of Damage Detection Technique in Laminated Composites using Tapping Sound (타격음을 이용한 복합재료 구조물의 손상탐지법의 개발)

  • 김승조;황준석;송준영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.171-174
    • /
    • 2000
  • In this paper, impact sound realization of composite structures is performed to investigate the possibility of a new NDE system - Tapping Sound Analysis (TSA). TSA detects the existence of damages inside the structures by comparing tapping sound with pre-computed sound data of healthy structures. Tapping on the structures is modeled as impact problem and solved using finite element method. Calculation of sound is formulated based on the coupled finite element and boundary element method. Numerical simulation of impact sound and feature extraction scheme show that the impact sound can be used in the identification of damages of laminated composites.

  • PDF

Acoustic Noise Source Identification in the Automotive Industry (자동차의 음향잡음의 원인규명 방안)

  • Hall, Paul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.91-97
    • /
    • 1996
  • We have all heard sounds that did not sound "right" while riding in an automobile. Objectionable sounds are difficult to find and understand because the sound field is complex and dynamic in the near field of an automobile. Many different noise sources and transmission paths must be understood before an engineering change can be recommended. This paper reviews the fundamental characterization of sound and chscusses the Sound Intensity measurement technique. Sound intensity measurements locate sources and sinks of acoustic energy. Used with narrowband analysis equipment, acoustic noise sources can be identified. Sound intensity measurements are made -in-situ and do not require specmi anechoic facilities. The measurement results in a vector representation of the near field sound field and can discriminate between multiple sound sources.d sources.

  • PDF

Automotive Power Steering System Noise Source Identification using Frequency Analysis and Sound Intensity (자동차 조향 유압 시스템의 주파수분석 및 음향인텐시티 측정을 통한 소음원 분석에 관한 연구)

  • 최창환;임상규
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.761-768
    • /
    • 1999
  • This paper presents an NVH test of Automotive power steering system performed at a half-car Test-rig. The test was done for neutral and full turn(or relief) conditions in steering wheel at a fixed rpm first, then followed by the same conditions for the rpm run-up. The sound intensity measurement verified the results from the frequency and order analysis, especially about the identification of major noise sources and their dominant frequencies. The results from thie study can be utilized in the system noise tuning when a new steering component is installed. In particular, the noise and vibration reduction at the relief condition will be accomplished through the knowledge obtained from this study and from the on-going research on the hose tuning techniques usign silencers and tuning cable inserted in the pressure hose.

  • PDF

Noise Source Identification of a Car A/V System (차량탑재용 A/Y 시스템의 소음원 규명)

  • 홍종호;이상호;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.930-938
    • /
    • 2004
  • This paper presents the noise source identification of a car A/V system. There are two different kinds of noise sources noise generated by loading mechanism and rattle noise by externally forced vibration. A dynamometer has been made to produce stationary inertia to the loading mechanism of A/V system. Sound pressure spectra and sound intensity were measured by operating the dynamometer setup as various motor speeds, and the results were analyzed. A dominant rattle noise source about A/V system's components has been found by multi-dimensional spectral analysis. Residual spectrum method was applied for eliminating coherence between the vibration sources. In result, the dominant rattle noise source was identified by partial coherent output spectrum of individual vibration component.

NOISE SOURCE IDENTIFICATION WITH INCREASED SPATIAL RESOLUTION

  • Gade, Svend;Hald, Jorgen;Ginn, Bernard
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.636-642
    • /
    • 2012
  • Delay-and-sum (DAS) Planar Beamforming has been a widely used Noise Source Identification Technique for the last decade. It is a quick one shot measurement technique being able to map sources that are larger than the array itself. The spatial resolution is proportional to distance between array and source, and inversely proportional to wavelength, thus the resolution is only good at medium to high frequencies. Improved algorithms using iterative de-convolution techniques offers up to ten times better resolution. The principle behind these techniques is described in this paper, as well as measurement examples from the automotive industry are presented.

  • PDF

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

Directed Identification, Synchronization by Aesthetic Recognition of Animation Field (애니메이션 분야의 심미적 인식에 의한 동일시와 동기화 연출)

  • Lee, Hyun Woo;Ryu, Chang Su
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1475-1482
    • /
    • 2022
  • Mickey Mousing perfect match between animation sound and image was an aesthetic in the field of animation, but since the 2000s, works such as and released by producers such as DreamWorks and Pixar have expanded the perfection of synchronization to irony. It also influenced the identification system of sentiment. It is time to view the directing attempt of these elements as a factor that changed the new paradigm of narrative, and related research is needed. In this study, the scene of was analyzed as a case study for the synchronization of animation sound and image components and the boundary direction on the recognition of identification between reality and fiction. Aesthetic recognition of the research work is based on the premise of real time and space perception, and the audience can recognize in the conceptual world as an integrated art by playfully producing fictional time and space. The direct antithesis of synchronization and identification was drawn to maintain the curiosity of the next scene by repeating selective concealment and disclosure of information in the direction of conveying an unfamiliar and heterogeneous feeling to the audience.

A Realization of Injurious moving picture filtering system with Gaussian Mixture Model and Frame-level Likelihood Estimation (Gaussian Mixture Model과 프레임 단위 유사도 추정을 이용한 유해동영상 필터링 시스템 구현)

  • Kim, Min-Joung;Jeong, Jong-Hyeog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In this paper, we propose the injurious moving picture filtering system using certain sounds contained in the injurious moving picture to filter injurious moving picture which is distributed without limitation in internet and internet storage space. For this purpose, the Gaussian Mixture Model which can well represent the characteristics of the sound, is used and frame level likelihood estimation is used to calculate the likelihood between filtering target data and the sound models. Also, the pruning method which can real-time proceed by reducing the comparing number of data, is applied for real-time processing, and MWMR method which showed good performance from existing speaker identification, is applied for the distinguish performance of high precision. In the identification experiment result, in case of the frame rate which is the proportion of total frame to high likelihood frame, is set to 50%, identification error rate is 6.06%, and in case of frame rate is set to 60%, error rate is 3.03%. As the result, the proposed system can distinguish between general and injurious moving picture effectively.