• 제목/요약/키워드: Sound Field Analysis

검색결과 338건 처리시간 0.031초

DVD 드라이브내에서 발생하는 유동소음에 관한 수치적 연구 (A Numerical Study on the Characteristic of Aeroacoustic Noise in DVD Drive)

  • 유승원;이종수;민옥기
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.471-476
    • /
    • 2001
  • This paper focuses on the numerical prediction of airflow-induced sound in DVD drives. As a first step, computational fluid dynamics (CFD) is conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. Acoustic analogy based on Ffowcs Wi1liams-Hawkings (FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. The strength of sound pressure revel with respect to rotating speed is discussed to meet upfront demand on the high fidelity product development. The present study also focuses on the noise directivity and examines how much the sound noise is sensitive to change in rotating speed. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, so it generates different sound noise Patterns compared with those in the near field.

  • PDF

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.894-903
    • /
    • 2014
  • Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구 (Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis)

  • 진봉용;이상호;조남효
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

피치 알고리즘의 수정 및 소음에의 적용 (Modification of pitch Algorithm and Its Application to Noise)

  • 신성환;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.511-516
    • /
    • 2002
  • Pitch is a perception related to the subjective frequency that is one of the psychological aspects or attributes of tones. It is also an important factor to determine the sound quality together with loudness and timber. Although the study on pitch has been active in the field of speech communication, but its application to the product sound quality is not yet enough. In this study, the empirical data by Zwicker is made use in the modification of the currently available pitch extraction model based on the place theory. By applying this modified model to various sound samples composed of tonal or banded components, the applicability of the model is suggested. As a demonstration example, the algorithm is used for the sound quality analysis of a product noise having fundamental frequency and harmonics. The result shows that the pitch should be regarded as an important subjective cue in the sound quality analysis.

  • PDF

원통형 진동자 내부의 이중관 중심에서의 음압해석 (An analysis of acoustic pressure in the center of double pipe inside of a cylindrical vibrator)

  • 김정순;김무준
    • 한국음향학회지
    • /
    • 제36권3호
    • /
    • pp.165-171
    • /
    • 2017
  • 유체로 채워진 원통형 압전진동자 내부에서 중심축으로 집속되는 음파에 대해 진동자 내부에 삽입된 동심원의 고체튜브가 음장분포에 미치는 영향을 해석하였다. 원통형 압전진동자의 내부로부터 방사된 음파는 유체매질을 지나 고체튜브의 벽면에서 반사 및 투과를 하여 중심축에 집속된다. 이때 고체튜브의 음향임피던스 및 두께 등에 의해 중심에 집속되는 음장 분포가 변한다. 이를 이론적으로 해석하기 위하여 각 매질에 대한 전달행렬을 도출하였고 이를 적용하여 중심축에서의 음압수준을 이론적으로 해석하였다. 여러 가지 두께를 갖는 아크릴 튜브에 대해서 중심축 상에서 측정한 음압수준의 변화는 이론해석의 결과와 잘 일치하였으며 중심에 형성되는 음압은 고체튜브의 두께에 따라 매우 민감하게 변화함을 확인하였다.

덕트가 있는 축류홴의 유동 및 음향장 해석 (An Analysis of the Flow and Sound Field of a Ducted Axial Fan)

  • 전완호;정기훈;이덕주
    • 한국유체기계학회 논문집
    • /
    • 제3권2호
    • /
    • pp.15-23
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Kirchhoff-Helmholtz BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM lot thin body is used to calculate tile sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

수중에서 진동하는 구조물로부터 방사되는 음에 기인한 레이저 도플러 진동측정기 광선의 위상변화에 대한 분석 (Analysis of the Phase Change of a Laser Beam in a Laser Doppler Vibrometer Due To the Sound Field Radiated From Structures Vibrating Underwater)

  • 길현권
    • 한국음향학회지
    • /
    • 제27권4호
    • /
    • pp.178-182
    • /
    • 2008
  • 레이저 도플러 진동 측정기를 사용하여 수중 구조물의 진동을 측정하는 경우, 구조물의 표면으로부터 레이저 광선이 겪는 위상 변화를 감지함으로써 진동을 측정하게 된다. 이 경우 레이저 광선은 진동하는 구조물 표면으로부터 방사되는 방사 음장을 통과하게 되며, 이러한 방사 음장에 의한 굴절률 변화에 의하여서도 레이저 광선은 위상 변화를 겪게 된다. 구조물의 진동을 측정하기 위하여서는 표면 진동 자체에 의한 레이저 광선의 위상 변화만을 감지하여야 하지만, 방사 음장의 굴절률 변화에 의한 레이저 광선의 위상 변화가 추가로 발생하여 진동 측정값에 오차를 발생시키게 된다. 이러한 오차는 공기중에서는 무시할 수 있을 정도로 작은 값이지만, 특히 수중에서는 구조물의 진동 측정값에 상당한 오차를 발생시킬 수 있게 된다. 본 논문에서는 수중에서의 방사 음장에 의한 레이저 광선의 위상 변화를 분석하였다. 예로써 수중에서 진동하는 무한 원통형 구조물로부터 방사 음장에 의한 레이저 광선의 위상 변화를 예측하고 분석하였다.

발포 알루미늄 흡음재를 이용한 단순 폐공간의 내부 음장 변화에 관한 연구 (Sound Absorption Effects in a Rectangular Enclosure with the Foamed Aluminum Sheet Absorber)

  • 김상헌;손동구;오재응
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.177-186
    • /
    • 1998
  • For the purpose of finding out the sound field characteristics in a cavity of a rectangular enclosure with foamed aluminum lining, analytical and experimental studies are performed with random noise input. Experimental method using two-microphone impedance tube measures the absorption coefficients and the impedances of simple sound absorbing materials. Measured acoustical parameters of the test samples are applied to the theoretical analysis to predict sound pressure field in the cavity. The sound absorp- tion effects from measurements are compared to prediction in both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

  • PDF

터보 냉동기의 소음원 파악 및 저소음화에 대한 연구 (A Study on the identification of the noise source and noise reduction method of turbo chiller)

  • 전완호;이준근;정필중;염창훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.125-131
    • /
    • 2000
  • The turbo chiller uses centrifugal compressor, which operates at about 14500 rpm. Due to the high rpm of the impeller, the noise of chiller makes one of the serious problems. The possibility of the sound reduction by using absorbing material is studied in this paper. The generated sound propagates through the duct and then radiates to the outer field. So, the use of sound absorption material inside the duct is one of the effective methods. To study the effect of location of the material, we use Boundary Element Method to analyze the sound field inside the duct system. Numerical study shows the highest sound pressure region is near the elbow of curved duct. From the analysis, it is also shown that the elbow duct is the main radiator of noise and sound absorption treatment of this duct results noise reduction of the highest noise level at BPF and high frequency region.

  • PDF