• Title/Summary/Keyword: Sound Enclosure

Search Result 61, Processing Time 0.035 seconds

An Implementation of a GPIAS Measurement System for Animal Tinnitus Detection and Study on Effect of Starting Point of Stimulus Background Sound on Startle Response (동물 이명 검사용 GPIAS 측정 장치 구현과 이를 통한 자극 배경음의 시작 시점이 놀람 반응에 주는 영향)

  • Jeon, Poram;Jung, Jae Yun;Lee, Seung-Ha;Park, Ilyong
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.410-414
    • /
    • 2013
  • As one of the effective methods for researching the objective tinnitus detection, the GPIAS (Gap Pre-pulse Inhibition of Acoustic Startle) measurement has been used to verify the existence of animal tinnitus objectively. The level and pattern of the background sound presented prior to a startle pulse are closely related with the GPIAS results. But the effect of the starting point of the background sound on animal startle responses has not been reported yet. In this paper, we present the implementation of a GPIAS measurement system based on an unconstrained enclosure to avoid animals' excessive constraint stress and deal with the animals' growth. After the performance of our implemented system has been tested through the animal experiment using 4 SD-rats, the effect of starting point of stimulus background sound on the startle response has been studied by the use of our implemented system. Through the results, it is verified that our system can measure the inhibition of animal startle responses due the gap pre-pulse for GPIAS calculation and the background sound starting point does not significantly effect on the startle response and the GPIAS values if the background sound continues for more than 300msec before a gap pre-pulse is presented.

A Study on the Identification of Noise Source and the Noise Reduction Method of a Turbo Chiller (터보냉동기의 소음원 파악 및 저소음화에 대한 연구)

  • Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we identify the noise source and the path of a chiller. This chiller is newly developed for R-l34a refrigerant and 250 RT cooling capacity. The measured overall SPL of the developed turbo-chiller is about 100 dBA. Due to the high rotating speed of the centrifugal impeller, the nun noise source of the chiller is the blade passing frequency and its higher harmonics of the centrifugal impeller. This generated soundpropagates through the duct, and then transmits and radiates to the outer field. From the experiment, it is found that the high frequency noise is mostlytransmitted and radiated through the elbow duct, but the low frequency noise is transmitted and vadiated through the condenser wall. Therefore applying the absorbing material is an effective way of reducing the high and low frequency noise simultaneously. Measurement results show that the application of the sound absorbing material to the elbow duct reduced the overall sound pressure level by 4 dB compared to the 9 dBA reduction for the case of full enclosure. In order to control the generated noise, a dissipativetype silencer is also designed and tested. The silencer reduced the radiated noise about 7.5 dBA.

Acoustic and Electrical Analysis of Microspeaker for Mobile Phones (모바일 폰용 마이크로스피커의 음향 및 전기 해석)

  • Park, Seok-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.525-536
    • /
    • 2014
  • In this paper, GUI program for microspeaker system simulation program was developed and verified through closed box, vent box and 6th order bandpass enclosure system. By using the pseudo loudspeaker model concept, TS parameters and rear volume of microspeaker were identified. Their suitabilities were proved by comparing test results with simulations of electrical impedance and sound pressure response curves for the three box types; closed box, vent box and 6th order bandpass box. Also, MSSP was found to be effective regardless of the microspeaker's shape, either circular or rectangular shape. MSSP can be used for the microspeaker system simulation, and can give a general prediction of such as; sound pressure level curve, electrical impedance, diaphragm velocity and displacement curve according to multiple design parameters; diaphragm mass, compliance, force factor, front and rear volume, front and rear port's diameter and length.

Enhanced Approach Using Computational and Experimental Method for the Analysis of Loudspeaker System

  • Park Seok-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.90-98
    • /
    • 2005
  • Enhanced approach using computational and experimental method is proposed and performed to describe very well the behavior of loudspeaker than conventional method. Proposed procedure is composed of four parts. First, Thiele-Small parameters for test loudspeaker are identified by an electrical impedance method like as a delta mass method. Second part includes the processes to measure physical properties. Physical data like masses and thicknesses of loudspeaker's components are measured by an electrical precision scale and a digital vernier caliper. Third, the identified Thiele-Small parameters are proposed to be used as load boundary conditions for vibration analysis instead of electromagnetic circuit analysis to get a driving force upon bobbin part. Also, these parameters and physical data are used to modify physical properties required for computation to accommodate simulated sound pressure level with measured one for loudspeaker enclosure system. These data like as Young's modulus and thickness for a diaphragm are required for vibration analysis of loudspeaker but not measured accurately. Finally, it was investigated that simulated sound pressure level with full acoustic modeling including an acoustic port for test loudspeaker agreed with experimental result very well in the midrange frequency band(from 100 Hz to 2,000 Hz). In addition, several design parametric study is performed to grasp acoustical behaviors of loudspeaker system due to variations of diaphragm thicknesses and shapes of dust cap.

FEASIBILITY STUDY OF SOUND POWER BASED ACTIVE NOISE CONTROL STRATEGIES FOR GLOBAL NOISE REDUCTION

  • Kang, Seong-Woo;Kim, Yang-Hann
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.785-790
    • /
    • 1994
  • The active noise control which regards the acoustic power as a target function to be minimized, is analyzed to test its feasibility of which simplifies the measurement system compared with the global acoustic energy based active noise control system. In fact, it is found that the acoustic power based active noise control strategy is equally likely as good as the global acoustic energy based active noise control method if the acoustic field of interest is diffusive or very low model density one. In the intermediate model density field, we also demonstrate that the power based control gives the similar results as the energy based control in terms of global sound energy reduction for the lightly damped enclosure which might be most important system in practical application. From all the theoretical and power based control strategy is dependent on the characteristics of the acoustic field to be controlled; i.e., the model density distribution, the degree of reverberation, and on the strength of modal interaction of the control source with the primary source; i.e., the location of control source.

  • PDF

Development of Safe Stove System using Sound Wave Fire Extinguisher (음파 소화기를 이용한 안전 스토브 시스템 개발)

  • Seo, Yunwon;Lee, Sukjae;Park, yungjoo;Kim, Kinam;Choi, Yongrae;Hwang, Hyungjun;Han, Seunghan;Shim, Dongha
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • In this paper, the architecture of a safe stove with an automatic fire suppression function using a sound wave fire extinguisher has been proposed and developed for the first time. A microcontroller connected to a fire sensor detects and suppresses a fire by driving a fire extinguisher. The sound wave fire extinguisher is composed of a speaker and collimator, and is driven by a driver module including an audio amplifier. The attenuation of the sound wave is reduced by preventing the sound diffusion with an enclosure surrounding a stove. The frequency of the sound wave is set to 50 Hz, and the sound pressure of 93 dBA is measured at the distance of 0.5 m. It takes maximum 8 and 15 seconds to suppress the flame from 7-cc and 14-cc flammable liquid, respectively, which corresponds to 24% and 42% of the natural extinguishing time. Since the proposed safe stove is non-toxic and leaves no residues over the conventional ones, it would combine with various home appliances to suppress early-stage fires and prevent fire expansion.

A Study on the Sound Absorption Characteristic of Glass Wool Structures Covered by Punched Steel Plate (유공함석판으로 보호된 글라스울 흡음구조체의 흡음특성에 관한 연구)

  • 김석홍;이상엽;권형오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.65-69
    • /
    • 1991
  • 소음제어대책 수립시, 흡음구조는 공조용소음기, 공업용소음기, Enclosure, 실 내 흡음판등에 폭넓게 이용되고 있다. 흡음구조의 재료중 글라스울은 뛰어난 흡음성능과 고온에서의 내구성 및 난연성등으로 인하여 여러 흡음재료중에 서 가장 많이 이용되고 있으나 글라스율 미립자의 비산 및 강도문제로 글라 스율에 글라스 클로스(Glass Cloth), P.E.Film등과 같은 글라스울 비산방지막 과 유공함석판을 붙인 흡음구조체로 제작하여 이용하는 것이 일반적이다. 국 내외적으로 글라스울만의 흡음율 데이타는 각종 문헌등에 많이 발표되어 있 으나 글라스울에 글라스울 비산방지막과 유공함석판을 붙인 흡음구조체의 흡음율데이타는 거의 없는 실정이다. 본 연구에서는 이러한 글라스울 흡음구 조체의 글라스울의 밀도, 글라스울 비산방지막의 종류, 유공함석판의 유공치 수 등에 따른 흡음특성을 잔향실법 흡음율측정방법에 의해 측정 평가하고 이들을 상호 비교검토하여 각종 소음 제어대책의 기초 설계자료로 제시하고 자 한다.

  • PDF

Development of Subwoofer for Car Audio System (자동차 오디오용 서브우퍼 개발)

  • Park, Seok-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper, computational analysis and experiments of subwoofer for car audio speaker system were performed and discussed to analyze acoustical phenomena for subwoofer. Ported enclosure system with subwoofer were manufactured and provided for test and simulation purposes. Subwoofer with single voice coil and double voice coil were identified by linear and nonlinear parameter identification method for loudspeaker parameters. For high power inputs to subwoofer, sound pressure levels were compared according to input powers with linear and nonlinear loudspeaker models. For subwoofer system with high power nonlinear speaker model was showed to be adequate to describe the behaviour of loudspeaker.

  • PDF

Quiet Zone Generation by Absorption Materials (흡음재 배치를 이용한 정숙 공간 형성 방법)

  • Park, Joo-Bae;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.403-408
    • /
    • 2000
  • An acoustic field in a 3 dimensional enclosure is caused from interference between sound sources and the complex reflections from wall. Therefore, changing an acoustic property of wall such as admittance means generating another acoustic field. The purpose of this paper is utilizing the characteristic to make a quiet zone. First, this paper shows that the control material is essentially on the same road as active noise control(ANC). That is, we can consider the control material as the control source of ANC. However we cannot control the reflection strength of it. Second, through a numerical simulation, this paper shows that the position of the control material is an important variable of the control.

  • PDF

Prediction of the Noise Levels for a Newly-founded Petrochemical Plant (신설 석유화학 공장의 소음도 예측)

  • 윤세철;이해경
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.135-142
    • /
    • 1996
  • Prolonged in-plant personnel exposure to high noise levels results in permant hearing damage. There are no way to correct this hearing damage by treatment or use of hearing aids. Therefore, every employer is responsible for providing a workplace free of such hazards as excessive noise. This study was carried out to evalute and predict a given noise environment based on specific limit as the noise guarantee for a newly-founded petrochemical plant. The maximum total sound level should not exceed 85dBA in the work area, except where the area is defined as a restricted area and 70dBA at the plant boundary. Prediction of the noise levels within the plant area for a newly-founded petrochemical plant was achieved by dividing all plant area into 20m$\times$20m regular grid spaces and noise level inside the area or unit that in-plant personel exposure to high noise levels was estimated computed into 5m$\times$5m regular grid spaces. The noise level at the grid point that was propagated from each of the noise sources(equipments) computed using the methematical formula was defined as follows : $SPL_2$=$SPL_1-20log{\frac{r_2}{r_1}}$(dB) where $SPL_1$ =sound pressure level at distance $r_1$ from the source $SPL_2$=sound pressure level at distance $r_2$ from the source As a result, the equipments exceeded noise limit or irritaring noise levels were identified on the specific grid coordinates. As for equipments in the area that show high noise levels, appropriate counter-measures for noise control (by barriers, enclosure, silencers, or the change of equipments, for example) should be reviewed. Methods for identifying sources of noise applied in this study should be the model for prediction of the noise levels for any newly-founded plant.

  • PDF