• 제목/요약/키워드: Sound Absorptive Material

검색결과 19건 처리시간 0.025초

효율적 실내 소음 저감을 위한 흡음재 분포 위치 결정 방법 (A Method to Arrange Absorptive Materials on Walls for Effective Interior Noise Control)

  • 김양한;조성호
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.303-309
    • /
    • 2004
  • Absorptive material arrangement method for effective interior noise control is proposed. Sound field with arbitrary boundary condition is formulated by Kirchhoff-Helmholtz integral equation. A simple example such as a rectangular cavity will present physical meaning between changing boundary condition and control of sound field. The effect of changing boundary condition is expressed in modal admittance. From this formulation. an admittance map is presented. The admittance map is the figure to represent position where absorptive material is attached for effective interior noise control. The admittance map can be assigned to each resonant frequency. There. however, may be common area of those maps. Then, frequency robust arrangement of absorptive material in noise control will be presented.

효율적 실내 소음 저감을 위한 흡음재 분포 위치 결정 방법 (A Method to Arrange Absorptive Materials on Walls for Effective Interior Noise Control)

  • 조성호;김양한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1702-1707
    • /
    • 2003
  • Absorptive material arrangement method for effective interior noise control is proposed. Sound field with arbitrary boundary condition is formulated by Kirchhoff-Helmholtz integral equation. A simple example such as a rectangular cavity will present physical meaning between changing boundary condition and control of sound field. The effect of changing boundary condition is expressed in modal admittance. From this formulation, an admittance map is presented. The admittance map is the figure to represent position where absorptive material is attached. The admittance map can be assigned to each resonant frequency. There, however, may be common area of those maps. Then, frequency robust arrangement of absorptive material in noise control will be presented.

  • PDF

흡음재 구성방법에 따른 방음벽의 흡음특성에 관한 연구 (Study on the Sound Absorption Properties of Noise Barrier according to the Compositions of Absorptive Material)

  • 김경우;양관섭;강재식;이승언
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1222-1227
    • /
    • 2002
  • Noise barrier is used to reduce traffic noise. The effect of a noise barrier depends not only on the materials, but also on the physical properties such as density, height and degree of absorption, etc. Typical absorptive noise barrier is used sound absorbing material, such as glass wool and mineral wool. The goal of this study is to develope excellent absorptive noise barrier using a polyester. Laboratory measurements were peformed with various thicknesses, density and layer of absorber in a reverberation room.

  • PDF

흡음형 방음판넬의 음향특성 (The Acoustical Characteristics of an Absorptive Panel)

  • 황철호;정성수;이우섭;김용태
    • 대한환경공학회지
    • /
    • 제22권10호
    • /
    • pp.1843-1850
    • /
    • 2000
  • 다공판과 흡음재, 그리고 공기총으로 구생되는 방음판에 대한 흡음계수를 측정하고 이론값과 비교하였다. 방음판은 세 가지 기본적인 조합물(다공판 + 공기층 + 흡용재, 다공판 + 흡음재, 다공판 + 흡음재 + 공기층)으로 구성하였다. 실험결과 저주파수 영역의 흡음력은 다공판과 공기층으로 구성되는 공명형 구조물의 공명 흡음에, 그리고 고주파수 영역은 다공판의 기공률에 크게 영향을 받음을 알 수 있었다.

  • PDF

흡음재 배치를 통한 닫힌 공간에서의 소음원 방사 파워 제어 (Radiation Power Control by Means of Absorptive Material Arrangement in an Enclosure)

  • 조성호;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.688-691
    • /
    • 2004
  • We have studied the possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work (1,2), the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. The possibility of total acoustic potential energy reduction by acoustic source power control is examined in an acoustically small cavity. Using acoustic energy balance equation, the relation between global noise control performance and absorptive material's arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent's distribution and impedance.

  • PDF

흡음재의 배치와 임피던스 선정을 통한 음원 방사파워 제어와 전역 소음 감소 (Acoustic Source Power Control and Global Noise Reduction by Selection of Distribution and Impedance of Absorptive Materials in Acoustically Small Enclosures)

  • 김양한;조성호
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.668-674
    • /
    • 2004
  • The possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials is discussed. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work,$^{(1.2)}$ the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. Changing boundary condition Is related to not only enclosure’s geometrical shape but also acoustical treatment on walls for example, attaching of impedance patches (ex: absorptive material). In many practical situations, we often meet situation to change acoustical treatment on walls. The possibility of total acoustic potential energy(globa1 noise) reduction by acoustic source power control is examined in an acoustically small cavity Using acoustic energy balance equation, the relation between global noise control performance and absorptive material’s arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent’s distribution and impedance.

테프론 막 재료의 흡음특성 및 적용효과 연구 (Sound Absorption Characteristics and Application Effect of PTFE Membrane Material)

  • 정정호;손장열;김정중
    • 한국소음진동공학회논문집
    • /
    • 제17권4호
    • /
    • pp.342-349
    • /
    • 2007
  • Following the 2002 World-Cup held in Korea, studies have been actively conducted on plans to utilize all-weather stadiums of fine figures, where large-scale spaces are available for various utilizations. In Japan, dome-type stadiums have been built and are utilizing across the whole nation not only for sports events but also variety of other large-scale events. PTFE(poly tetra fluoro ethylene) is one of the membrane material mainly used for the outer ceiling surface of membrane structures. However, there has not been enough research on the acoustical properties of PTFE membrane material which has been widely used in the multi-purpose stadiums. In this study, air permeability values and sound absorption coefficient of PTFE membrane materials were measured and evaluated in the gymnasium. From the results of measurements of sound absorption coefficient and air permeability of inner membrane materials, it was found that the sound absorption coefficient was good in the air permeability range of $5{\sim}15\;cc/cm^2/s$. Also the relation ship between air permeability and sound absorption coefficient was very high and the sound absorption coefficient was the highest in the range of $6{\sim}9\;cc/cm^2/s$. Secondly, an analysis on the measurements sound absorption characteristics of inner membrane material reveals that the overall sound absorption coefficient was stabilized(higher than 0.5 throughout the whole frequency bands) when the air space behind the membrane material was deeper than 600 mm. When PTFE sound absorptive membrane material was installed in the ceiling of gymnasium, it was confirmed that sound absorptive membrane material can reduce reverberation and increase speech intelligibility in the gymnasium.

도로교통소음의 방음벽 흡음효과에 관한 연구 (A Study on the Effects of Absorptive Treatments for the Highway Noise Barriers)

  • 김재석;루이스칸;김갑수
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.146-156
    • /
    • 1998
  • 자동차의 폭발적인 증가와 아울러 경부고속전철시대를 맞이함으로 인하여 소음공해는 큰 사회적 문제로 대두되고 있다. 본 연구는 이러한 소음공해에 대한 해결책의 일환으로 효율적인 방음벽을 연구 하는데 그 목적이 있다. 방음벽의 연구는 먼저 반사형 방음벽과 흡음형 방음벽에 대한 소음저감효과 를 산정한 다음, 흡음재료를 사용함으로서 감소되는 소음저감 효과를 산정하는데 큰 의의가 있다. 본 연구결과에 의하면 방음벽의 높이에 비하여 음의 파장이 대체로 짧을 때는 방음벽의 상단부분에 흡음재를 설치하면 방음벽 전체에 흡음재를 설치한 것과 같은 효과가 있다는 결론을 얻었다. 도로교통소음은 평균주파수가 550Hz 이므로 이때 파장은 60cm 정도이다. 방음벽 높이를 4m로 설치했을 때 방음벽 상단에서 60cm 정도만 흡음재를 사용하면 4m전체의 방음벽에 흡음재를 사용한 것과 같은 효과가 있는 것으로 나타났다. 흡음재를 사용한 소음저감의 효과는 점음원이고 수음자의 위치가 $135^{\circ}$ 일 때 평균 8dB(A)정도이고, 선음원일때는 평균 3dB(A)정도의 효과가 있는 것으로 나타났다 이러한 흡음형의 방음벽은 경제적일 뿐만 아니라 방음벽의 높이를 최소한 1m이상 줄일 수 있으므로 국토를 고도로 이용해야 되는 우리 나라의 여건에 대단히 효과적인 방음벽이라 사료된다.

  • PDF

음장제어용 막재료의 음향 및 단열특성 (Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control)

  • 정정호;김정욱;정재군;조병욱
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

흡음재의 적절한 위치 및 임피던스 선정을 통한 효율적인 실내 소음 제어 (Good Choice of Positions and Impedances of Absorptive Materials for Effective Interior Noise Control)

  • 조성호;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.791-796
    • /
    • 2003
  • Some basic guidelines for changing non-uniform boundary condition in an acoustically small cavity are presented. In this paper, modal summation technique is used to represent inside sound field. From this formulation, corner effect is defined and proposed. The corner in a cavity is good position for changing boundary condition effectively. Impedance circle with same absorption coefficient is defined to find appropriate impedance of absorptive material for better noise control performance.

  • PDF