• 제목/요약/키워드: Sortation System

검색결과 2건 처리시간 0.015초

스마트 팩토리에서 그리드 분류 시스템의 협력적 다중 에이전트 강화 학습 기반 행동 제어 (Cooperative Multi-Agent Reinforcement Learning-Based Behavior Control of Grid Sortation Systems in Smart Factory)

  • 최호빈;김주봉;황규영;김귀훈;홍용근;한연희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권8호
    • /
    • pp.171-180
    • /
    • 2020
  • 스마트 팩토리는 설계, 개발, 제조 및 유통 등 생산과정 전반이 디지털 자동화 솔루션으로 이루어져 있으며, 내부 설비와 기계에 사물인터넷(IoT)을 설치해 공정 데이터를 실시간으로 수집하고 이를 분석해 스스로 제어할 수 있게 하는 지능형 공장이다. 스마트 팩토리의 장비들은 게임과 같이 가상의 캐릭터가 하나의 객체 단위로 구동되는 것이 아니라 수많은 하드웨어가 물리적으로 조합되어 연동한다. 즉, 특정한 공동의 목표를 위해 다수의 장치가 개별적인 행동을 동시다발적으로 수행해야 한다. 공정 데이터를 실시간으로 수집할 수 있는 스마트 팩토리의 장점을 활용하여, 일반적인 기계 학습이 아닌 강화 학습을 사용하면 미리 요구되는 훈련 데이터 없이 행동 제어를 할 수 있다. 하지만, 현실 세계에서는 물리적 마모, 시간적 문제 등으로 인해 수천만 번 이상의 반복 학습이 불가능하다. 따라서, 본 논문에서는 시뮬레이터를 활용해 스마트 팩토리 분야에서 복잡한 환경 중 하나인 이송 설비에 초점을 둔 그리드 분류 시스템을 개발하고 협력적 다중 에이전트 기반의 강화 학습을 설계하여 효율적인 행동 제어가 가능함을 입증한다.

소포물 분류 시스템의 다중 에이전트 강화 학습 기반 행동 제어 (Multi-Agent Reinforcement Learning-based Behavior Control of Parcel Sortation System)

  • 최호빈;김주봉;황규영;한연희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.1034-1035
    • /
    • 2020
  • 인공지능은 스스로 학습하며 기존 통계 분석보다 탁월한 분석 역량을 지니고 있어 스마트팩토리 혁신에 새로운 전기를 마련할 것으로 기대된다. 이를 증명하듯 스마트팩토리의 주요 분야인 공정 간 연계 제어, 전문가 공정 제어, 로봇 자동화 등에서 활발한 연구가 이어지고 있다. 본 논문에서는 소포물 분류 시스템에 전통적인 룰 기반의 제어 방식 대신 다중 에이전트 강화 학습 제어 방식을 설계 및 적용하여 효과적인 행동 제어가 가능함을 입증한다.