• Title/Summary/Keyword: Sorption behavior

Search Result 122, Processing Time 0.025 seconds

Radionuclide Sorption in the Geosphere: Role of Single Minerals (지하매질에서의 방사성핵종흡착: 단일광물의 역할)

  • Cho, Young-Hwan;Hyun, Sung-Pil;Hahn, Pilsoo
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.40-40
    • /
    • 2001
  • The sorption behavior of Cs(I), Sr(II), and U(VI) on representative single minerals(oxide and clay) and rocks were comparatively studied by using batch type sorption experiment. The effects of pH, ionic strength and the sorption mechanism were also discussed. It was found that mineral structure played as a main factor governing the sorption characteristics of Cs(I), Sr(II). The sorption of Cs(I) and Sr(II) on minerals showed ionic strength-dependency, which is a indirect sign of weak binding between metal cation and mineral surfaces. However, the sorption behavior of U(VI) was quite different compared with that of Cs(I), and Sr(II). Fe-oxide minerals showed strong tendency for U(VI) sorption, dominating the sorption in the composite/mixture systems. The surface characteristics which arise from mineral structure, and the affinity of metal ions to the sorption sites of minerals are the key to understand the role of minerals in the radionuclide sorption.

  • PDF

Sorption behavior of Eu(III) on Tamusu clay under strong ionic strength: Batch experiments and BSE/EDS analysis

  • Zhang, Han;He, Hanyi;Liu, Jun;Li, Honghui;Zhao, Shuaiwei;Jia, Meilan;Yang, Jijun;Liu, Ning;Yang, Yuanyou;Liao, Jiali
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.164-171
    • /
    • 2021
  • The europium sorption on Tamusu clay was investigated by batch sorption experiments and spectroscopic study under the condition of strong ionic strength. The results demonstrated that europium sorption on Tamusu clay increased rapidly with pH value, but decreased with the ionic strength of solution increased. The europium sorption also increased in the presence of humic acid, especially at low pH value. The sorption could be fitted by Freundlich isotherm model and the europium sorption on clay was spontaneous and endothermic reaction. Besides, the result indicates that ion exchange was the main process at low pH value, while inner-sphere surface complexation dominated the sorption process at high pH value. The Backscatter electron scanning/Energy Dispersive Spectrometer(BSE/EDS) and the effect of Na for europium sorption results further suggested that europium sorption on Tamusu clay mainly competed with Na at low pH value. Overall, the results in this research were of significance to understand the sorption behavior of europium on the geological media under high ionic strength.

A Chelating Resin Containing 2-(2-Thiazolylazo)-5-dimethylaminophenol as the Functional Group: Synthesis and Sorption Behavior for Some Trace Metal Ions

  • Lee, Won;Lee, Si-Eun;Kim, Mi-Kyoung;Lee, Chang-Heon;Kim, Young-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1067-1072
    • /
    • 2002
  • A new polystyrene-divinylbenzene resin containing 2-(2-thiazolylazo)-5-dimethylamino-phenol (TAM) functional groups has been synthesized and its sorption behavior for nineteen metal ions, including Zr(Ⅳ),Hf(Ⅳ) and U(Ⅵ) has been investigated by batch and column methods. The chelating resin showed high sorption affinity for Zr(Ⅳ) at pH 1-5 and U(Ⅵ) at pH 4. Some parameters affecting the sorption of the metal ions have been detailed. The breakthrough and overall capacities were measured under optimized conditions. The overall capacities of Zr(Ⅳ), Th(Ⅳ) and U(Ⅵ), which showed higher than the other metal ions, were 0.90,0.84 and 0.80 mmol/g, respectively. The elution order of metal ions at pH 4 was evaluated as Zr(Ⅳ) > Th(Ⅳ) > U(Ⅵ) > Cu(Ⅱ) > Hf(Ⅳ) > W(Ⅵ) > Mo(Ⅵ) > In(Ⅲ) > Sn(Ⅳ) > Cr(Ⅲ) > V(Ⅴ) > Fe(Ⅲ). Quantitative recovery of most metal ions except Zr(Ⅳ) was achieved using 2M HNO3. Desorption and recovery of Zr(Ⅳ) was successfully performed with 2 M HClO4 and 2 M HCl.

The Uptake of Solvent in Polymeric Thin Membranes By a Relaxation-Sorption Coupled Mechanism

  • Song, Kyu-Min;Hong, Won-Hi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.43-44
    • /
    • 1995
  • The diffusion behavior of liquid into polymer has been described by Fick's law, but the departure from Fickian diffusion is frequently found. In this study, 'noble' expressions for the rates of relaxation and sorption are introduced to eliminate these limitations. The ralaxation-sorption coupled mechanism model are based on the possibility of contacting liquid molecule and the active site which has the numerical concept of free volume. The concept has an analogy of reaction rate expressed by the possibility of collision with molecules and used in adsorption and reactive extraction etc. The new model simulated by Rungc-Kutta method for initial-value problem and Fickian diffusion is caompared with experimental data. The results show that the ralaxation-sorption coupled mechanism is able to account well for Fickian and non-Fickian sorption behavior including sigmoid and two-stage. In addition, this model has a chance of expansion to multi-component sorption with ease.

  • PDF

A Characterization of Permeation Behavior of Acetic Acid-Water Mixtures Through Crosslinked PAA-PVA Membranes in Pervaporation Separation (투과증발 PAA-PVA막을 통한 초산-물 혼합물의 투과거동에 관한 연구)

  • 김선우;염충균;임지원
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.227-235
    • /
    • 1996
  • poly(acrylic acid)(PAA)-poly(vinyl alcohol)(PVA) membranes have been prepared by crosslinking reaction between the carboxylic acid groups of PAA and the hydroxylic groups of PVA. In the measurements of the swelling and preferential sorption of the membranes, sorption behaviors of the membranes in pure water, pure acetic acid and a mixture of them have been investigated, respectively. From the measurements of the preferential sorption in 90wt% acetic acid of aqueous mixture, the sorption of water component was found to be more enhanced at high PAA content in the membrane than that of acetic acid component due to the interaction of water with acetic acid. The sorption behavior and the degree of crosslinking influenced competitively the permeation behavior of permeants. Permeation behavior of perrecants through the membranes was analyzed by using permeation activation energies which had been obtained from the Arrhenius plots of fluxes.

  • PDF

Sorption of Organic Penetrants by Amorphous Polyamide (비결정 폴리아마이드에 대한 유기화합물의 흡착 특성 연구)

  • Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.4 no.1
    • /
    • pp.11-16
    • /
    • 1997
  • Sorption studies involving the sorption of n-propanol by an Amorphous Nylon(Nylon 6I/6T) were carried out as a function of sorbate vapor activity at $23^{\circ}C$. Vapor activity levels from 0.035 to 0.91 were investigated to evaluate the concentration dependency of sorption mechanism. Sorption behavior of propanol by Nylon 6I/6T showed distinctive two mode sorption phenomena as a function of Vapor activity. At Vapor activity levels below a=0.11, equilibrium sorption was achieved within a short period of time(less than 20hrs), which can be interpreted as following a Fickian diffusion model. A Langmuir-Flory-Muggins Dual Mode Sorption model can also be applied at these concentration levels. However, for Vapor activities above a=0.11, the sorption process appeared to be non-Fickian and resulted in a lack of equilibrium being attained.

  • PDF

Effects of solution, sorbate, and sorbent chemistries on polycyclic aromatic hydrocarbon sorption to hydrated mineral surfaces

  • Yim, Soobin
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.132-135
    • /
    • 2003
  • Solution chemistry, sorbate chemistry, and sorbent chemistry were widely investigated to find important factors that affect PAH sorption on mineral surfaces and to elucidate its microscopic mechanism. The solution chemistry, pH and ionic strength caused measurable change of HOC sorption reaction to minerals. The detectable change of Ka occurred at a pH region crossing the PZC (Point of Zero Charge) of each mineral. The PAH hydrophobicity, one of sorbate chemistry, was observed to have a strong correlation with PAM sorption to mineral. Mineral surface area was not found to be a predominant factor controlling PAH sorption. The mineral type might be more likely to play a crucial role in controlling the PAH sorption behavior. The CEC (Cation Exchange Capacity) of mineral, representing surface charge density, has meaningful correlation with regression slope of sorption coefficients (log $K_{d}$) versus aqueous activity coefficients (log Υ$_{w}$).).).

  • PDF

Mechanisms of Cu(II) Sorption at Several Mineral/Water Interfaces: An EPR Study

  • Cho, Young-Hwan;Hyun, Sung-Pil;Pilsoo Hahn
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.72-72
    • /
    • 2002
  • In most traditional sorption study in environmental conditions, experimental sorption data have been measured and interpreted by empirical ways such as partition coefficient and sorption isotherms. A mechanistic understanding of heavy metal interactions with various minerals (metal oxides, clay minerals) in aqueous medium is required to describe the behavior of radioactive metal ions in the environment. Various spectroscopic methods provide direct or indirect information on sorption mechanisms involved. We applied EPR (Electron Paramagnetic Resonance) spectroscopy to investigate the nature of metal ion sorption at water/mineral interfaces using Cu(II) as a spin probe. The major sorbed species and their motional state was identified by their EPR spectra. They showed distinct signals due to their strength of binding, local structure and motional state. The EPR results together with macroscopic sorption data show that sorption involved at least three different mechanisms depending on chemical environments (1).

  • PDF

Potential Application of Environmental Tracer in Hydrogeochemistry Using Sorption Properties (환경 추적자의 흡착 특성을 이용한 수리지화학적 활용 가능성 고찰)

  • Choung, Sungwook;Chang, Seeun;Kim, Minkyung;Kim, Sungpyo;Um, Wooyong
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.59-68
    • /
    • 2012
  • This study provided sorption properties of chlorofluorocarbons (CFCs), and elucidated potential application of CFC sorption data in hydrogeochemistry. Prior sorption studies were reviewed for hydrophobic organic compounds similar to the CFCs, because there were only few CFC sorption studies. The CFCs are regarded as relatively conservative chemicals in groundwater environments based on their moderate hydrophobicity. However, thermally altered carbonaceous matter (TACM) can significantly increase sorption capacity and nonlinearity for hydrophobic organic compounds such as CFCs, compared to general soil organic matter. CFC sorption behavior are close to the sorption for reviewed organic chemicals. Therefore, the CFC sorption data can be used for determining hydrogeochemical properties and predicting transport of organic contaminants in TACM-containing aquifer environments.

Sorption of Se(-II) on illite, MX-80 bentonite, shale, and limestone in Na-Ca-Cl solutions

  • Walker, Andrew;Racette, Joshua;Saito, Takumi;Yang, Tammy (Tianxiao);Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1616-1622
    • /
    • 2022
  • Selenium has been identified as an element of interest for the safety assessment of a deep geological repository (DGR) for used nuclear fuel. In Canada, groundwaters at DGR depths in sedimentary rocks have been observed to have a high ionic strength. This paper examines the sorption behavior of Se(-II) onto illite, MX-80 bentonite, Queenston shale, and argillaceous limestone in Na-Ca-Cl solutions of varying ionic strength (0.1-6 mol/kgw (m)) and across a pH range of 4-9. Little ionic strength dependence for Se(-II) sorption onto all solids was observed except that sorption at high ionic strength (6 m) was generally slightly lower than sorption at low ionic strength (0.1 m). Illite and MX-80 exhibited the expected results for anion sorption, while shale and limestone exhibited more constant sorption across the pH range tested. A non-electrostatic surface complexation model successfully predicted sorption of Se(-II) onto illite and MX-80 using the formation of an inner-sphere surface complex and an outer-sphere surface complex. Optimized values for the formation reactions of these surface species were proposed.