• Title/Summary/Keyword: Soot particle temperature

Search Result 42, Processing Time 0.029 seconds

Experimental and Computational Studies on Particle Behavior in High Temperature Gas with the Various Temperatures of a Solid Wall (고체의 벽면온도에 따른 고온가스 내의 입자거동에 대한 실험 및 수치해석 연구)

  • Choi, Jae-Hyuk;Lee, Ki-Young;Yoon, Doo-Ho;Yoon, Seok-Hun;Choi, Hyun-Kue;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.403-412
    • /
    • 2006
  • The effect of a wall temperature on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. The fuel for the flames was an ethylene ($C_2H_4$). The surrounding oxygen concentration was 35% with surrounding air temperatures of $T_a=600K$. In the study, three different wall temperatures. $T_w$=300, 600, 800K, were selected as major test conditions. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results showed that the maximum soot volume fractions at $T_w$=300, 800 K were $8.8{\times}10^{-6},\;9.2{\times}10^{-6}$, respectively. However, amount of soot deposition on wall surface was decreased because of lower temperature gradient near the wall with increasing wall temperature. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results from the numerical simulation successfully predicted the differences in the motion of soot particles by different wall temperature near the burner surface and are in good agreement with observed soot behavior that is, the 'soot line', in microgravity.

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

A Study on Combustion Characteristics of Turbulent Spray Flame by the Dual Swirler (2중스월류에 의한 난류분무화염의 연소특성 연구)

  • Lee, Kang-Yeop;Hwang, Sang-Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.105-116
    • /
    • 2000
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swril flow(DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic(TSPD) as TEM were carried out. The NOx, $CO_2$,$O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

Performance Estimation of Small Regenerative Radiant Tube Burner System using High Velocity Discharge (고속분사를 이용한 소형 축열식 복사관 버너시스템의 성능평가)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.242-247
    • /
    • 2004
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swirl flow (DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic (TSPD) as TEM were carried out. The NOx, $CO_2$, $O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

A Study on Combustion Characteristics of Turbulent Spray Flame by the Dual Swirler (2중스월류에 의한 난류분무화염의 연소특성 연구)

  • Lee, Kang-Yeop;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.67-79
    • /
    • 2000
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swril flow(DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microstructure using thermophoretic sampling particle diagnostic(TSPD) as TEM were carried out. The NOx, $CO_2,\;O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

An Experimental Study on the Measurement of Soot Contamination in a Diesel Engine Oil (디젤 엔진오일 내 Soot 함량 증가에 따른 오염도 측정에 관한 실험적 고찰)

  • 공호성;조성용;윤의성;한흥구;정동윤
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.251-258
    • /
    • 2003
  • New method and device for the on-line measurement of soot concentration in a diesel engine oil are proposed, where the measurement principle is based mainly on attenuated internal total reflection. The detector were evaluated in various ranges of contaminated oils by carbon black particles. It was found that the proposed detector could be well used to monitor the oil deterioration due to soot contamination. Operational range of the detector was found from 0 to 5 mass percentage of soot content. Test results with water and fuel dilution showed that these effects were not remarkable. However, adsorption of carbon black particles onto the measurement surface was considered to be a critical problem of the detector. Effects of particle deposition on the interface was experimentally evaluated with the oil temperature and flow turbulence and discussed throughout this work.

Morphological Study on the Soot Transition in a Propane/Air Laminar Diffusion Flame (프로판 층류확산화염의 그을음 천이에 대한 형태학적 연구)

  • Shim, Sung-Hoon;Yoo, Chang-Jong;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.24-33
    • /
    • 2002
  • The morphology of deposits on $15-{\mu}m$ thin SiC filaments has been investigated with SEM in a co-flowing, propane/air laminar diffusion flame. The average size of mature soot particles deposited in the luminous flame edge is strongly dependent on their axial position in a typical heavily sooting flame. The surface growth of liquid-phase PAHs molecules and the transition to soots from fully-developed precursors could be observed in the radial deposition of the flame. Two sooting regimes were found: one is the transition from the condensed-phase precursors; the other is the aggregation of smaller soot particles (or chains of them) to be carried along particle path lines. In the high temperature flame edge outside the soot luminous flame surface, the very thin fiber-like structures, which are about 10 nm thick, were found.

  • PDF

Observation of Soot Behavior in Diffusion Flame according to Surrounding Air Velocity (분위기유속에 따른 확산화염내 매연거동파악)

  • Choi, Jae-Hyuk;Park, Won-Seok;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.254-255
    • /
    • 2005
  • The effect of surrounding air velocity on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. An ethylene($C_2H_4$) diffusion flame was formed around a cylindrical rod burner in surrounding air velocity of $v_{air}$=2.5, 5, and 10 cm/s with oxygen concentration of 35 % and wall temperature of 300 K. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results show that the soot particle distribution region moves closer to the surface of the wall with increasing surrounding air velocity. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results successfully predicted the differences in the motion of soot particles by different surrounding air velocity near the burner surface and are in good agreement with observed soot behavior in microgravity. A comparison of the calculations and experimental results led to the conclusion that a consideration of the thermophoretic effect is essential to understand the soot deposition on walls.

  • PDF

Catalytic oxidation kinetics of iron-containing carbon particles generated from diesel-sprayed hydrogen-air diffusion flame (디젤-분무 수소-공기 확산화염에서 생성된 철-함유 탄소입자의 촉매 산화반응 특성)

  • Kim, Yongho;Kim, Yong-Tae;Kim, Soo Hyung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.51-67
    • /
    • 2008
  • In this study, we devoted to kinetic measurement of the catalytic oxidation of iron-containing flame soot particles and better understanding the role of catalytic particles on carbon oxidation in particular at low temperature, targeting on autothermal regeneration of diesel particulate filter by diesel exhaust gas. Carbon-based Fe-containing particles generated by spraying ferrocene-doped diesel fuel in an oxy-hydrogen flame are tested and compared with a commercial carbon black powder for thermogravimetric analysis (TGA), secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), Induced coupled plasma-Atomic emission spectroscopy (ICP-AES), and High-resolution transmission electron microscopy (HR-TEM). As a result, we found that a small amount of the ferrocene addition led to significant reductions in a on-set temperature and an activation energy of the carbon oxidation as well. An oxygenated surface complex forming at the particle surface could be thought as active species that would be readily consumed in particular at low temperature.

  • PDF

Soot Formation and Combustion in Turbulent Flames (난류 화염 내에서의 매연 입자의 생성및 재연소)

  • 정종수;신현동;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.962-978
    • /
    • 1989
  • A new model of the combustion rates of soot particle in turbulent flames has been suggested. This model applies the combustion rate of soot particles in laminar flames and uses local time-averaged quantities in order to consider the effect of the chemical reaction on the soot combustion in turbulent flames. The proposed rate equation has been tested for two propane-air turbulent round-jet diffusion flames and gives better predictions for the soot concentration field of two flames than the model previously used, especially in low temperature regions. A modified Monte carlo Method for analyzing radiative heat transfer of a flame also has been suggested and tested, which reveals good results.