• Title/Summary/Keyword: Soot morphology

Search Result 22, Processing Time 0.027 seconds

The Calibration Method of Time Resolved Laser Induced Incandescence Using Carbon Black Particles for the Soot Measurement at Exhaust Tail Pipe in Engine (엔진 배기단 적용을 위한 Time Resolved Laser Induced Icandescence (TIRE-LII) 신호의 보정 : 카본 입자 이용)

  • Oh Kwang Chul;Kim Deok Jin;Lee Chun Hwan;Lee Chun Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1335-1343
    • /
    • 2005
  • The calibration technique of Time Resolved Laser Induced Incandescence was investigated both experimentally and numerically by using standard-sized carbon black particles for the instantaneous soot measurement at exhaust tail pipe in engine. The carbon black particles (19nm, 25nm, 45nm and 58nm) used in this study are similar, though not identical, to soot particle generated from flame not only in morphology but also in micro-structure. The amount of soot loading in flow was controled by a diluted gas (nitrogen) and was measured by the gravimetric method at exhaust pipe in calibrator. The successful calibrations of primary particle size and soot mass fraction were carried out at the range from 19nm to 58nm and from $0.25mg/m^3$ to $37mg/m^3$ respectively. And based on these results the numerical simulation of LII signal was tuned and the effect of an exhaust temperature variation on the decay rate of LII signal was corrected.

Flickering Frequency and Pollutants Formation in Microwave Induced Diffusion Flames (마이크로파가 인가된 화염에서의 주파수 특성과 오염물질 생성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • The use of electromagnetic wave has been interested in various energy industry because it enhances a flame stability and provides higher safety environments. However it might increase the pollutant emissions such as NOx and soot, and have harmful influence on human and environments. Therefore, it is very important to understand interaction mechanism between flame and electromagnetic wave from environmental point of view. In this study, an experiment was performed with jet diffusion flames induced by electromagnetic wave. Microwave was used as representative electromagnetic wave and a flickering flame was introduced to simulate the more similar combustion condition to industry. The results show that the induced microwave enhances the flame stability and blowout limit. The unstable lifted flickering flames under low fuel/oxidizer velocity is changed to stable attached flames or lift-off flames when microwave applied to the flames, which results from the abundance of radical pool. However, NOx emission was increased monotonically with increasing the microwave power as microwave power increased up to 1.0 kW. The effects might be attributed to the heating of combustion field and thermal NOx mechanism will be prevailed. Soot particle was examined at the post flame region by TEM grid. The morphology of soot particle sampled in the microwave induced flames was similar to the incipient soot that is not agglomerated and contain a lots of liquid phase hydrocarbon such as PAH, which soot particle formed near reaction zone is oxidized on the extended yellow flame region and hence only unburned young particles are emitted on the post flame region.

Emission Characteristics of Gasoline/ethanol Mixed Fuels for Vehicle Fire Safety Design (차량화재 안전설계를 위한 휘발유/에탄올 혼합연료의 연소생성물 배출 특성)

  • Kim, Shin Woo;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • Combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally for vehicle fire safety. The numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. The simulating cases with three independent variables, i.e. ethanol mole fraction, equivalence ratio and residence time, were designed to predict and optimized systematically based on the response surface method (RSM). The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence need to adjust combustion itself rather than an after-treatment system. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires in the cup burner. The results show that soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. For soot morphology by TEM sampling, the incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

Study on the size spectrum and morphology of soot particles in a compartment fire (구획화재에서 매연입자의 시간에 따른 입경별 농도분포 및 형상 변화에 관한 연구)

  • Goo, Jae-Hark
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.258-261
    • /
    • 2011
  • 실내에서 화재가 발생한 경우에 매연의 크기분포 및 형상(morphology) 변화 특성은 경보장치의 작동 및 흡입에 의한 인체피해 등과 관련되어 중요한 연구 분야이다. 이와 관련하여 많은 연구가 이루어져 왔으나 실험에 의한 연구는 각 연구마다 결과치가 정량적 또는 정성적 측면에서 많은 편차를 보이고 있고, 이론적인 연구는 몇몇 특정 조건에 대하여 제한적으로 이루어져 있어서, 실재 구획화재에 적용하는 데는 어려움이 있다. 이 연구에서는 구획화재에 대하여 발열속도이력(history of heat release rate) 및 매연발생률(soot yield) 등에 따른 매연입자의 크기분포 및 형상 변화 해석을 위한 방법을 개발하였으며, 이를 유럽표준시험화재(EN54 Part7)에 규정된 폴리우레탄폼화재(TF4)에 대하여 시험 적용하였다. 이 방법에서는 입자의 크기분포방정식(dynamic equation for the discrete-size spectrum)을 푸는데 있어서 계산시간을 줄이기 위하여 결절방법(nodal method)을 도입하였으며, 또한 실재 화재에서의 매연입자의 성장에 따른 입경범위에 맞추기 위하여 분자운동영역(free molecular region)과 연속영역(continuum region)을 포괄하는 입자크기에 적용되는 충돌빈도함수(collision frequency function)를 사용하였다.

  • PDF

Combustion Characteristics of Ionized Fuels for Battery System Safety (배터리 시스템 안전을 위한 이온화 연료의 연소 특성)

  • Ko, Hyeok Ju;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • Many electronic devices are powered by various rechargeable batteries such as lithium-ion recently, and occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the results have been still unsatisfied. Because most rechargeable batteries are operated on the ion state during charge and discharge of electricity and the combustion of ion state has big difference with normal combustion. Here we focused on the effect of ions including an electron during combustion process. The effects of an ionized fuel on the flame stability and the combustion products were experimentally investigated in the propane jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the propane was ionized with th ionizer (SUNJE, SPN-11). The results show that toe overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased by fuel ionization, especially high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.

THE MORPHOLOGY OF CHROMIUM AND LIF MEASUREMENT OF ATOMIC ARSENIC IN LAMINAR DIFFUSION FLAMES

  • Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.61-68
    • /
    • 1997
  • The morphology and size distribution of chromium oxides and the concentration measurement of atomic arsenic have been studied in laminar diffusion flames. Nitrogen was added to vary flame temperatures in hydrogen flames. Ethene flames were used in order to investigate the potential for interaction between the soot aerosol that is formed in these flames and the chromium aerosol. Two sources of chromium compounds were introduced: chromium nitrate and chromium hexacarbonyl. A detailed investigation of the morphology was carried out by scanning electron microscopy (SEM). The amounts of Cr(VI) and total Cr were determined by a spectrophotometric method and by X-ray fluorescence spectrometry, respectively. Also, LIF was used for the measurement of atomic arsenic, which was excited at 197.2 nm and was detected at 249.6 nm. Results showed that the morphology of the particles varied with the flame temperature and with the chromium source. The particles were characterized by porous structures, cenospheres and agglomerated dense particles when chromium nitrate solution was added to the flames. At low to moderate temperatures, porous sintered cenospheric structures were formed, in some cases with a blow hole. At higher temperatures, an agglomerated cluster which was composed of loosely sintered submicron particles was observed. It was also found that the emission of Cr(VI) from the undiluted $H_2$ flame was more than 10 times larger than in the 50% $H_2$ / 50% $N_2$ flame on a mass basis. Single point LIF measurement of atomic arsenic indicated that arsenic exist only in the low temperature, fuel rich region.

  • PDF

Smoke Characteristics of a Small Scale Pool Eire (작은 풀화재에서의 연기 특성)

  • Lee Eui-Ju;Ahn Chan-Sol;Shin Hyun-Joon;Oh Kwang-Chul;Lee Uen-Do
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.58-63
    • /
    • 2005
  • Experimental measurements of flames and the product properties were performed for small kerosene pool fires. which is widely used as a fire source of laboratory scale experiments with scaling modeling. The flame length and flickering frequency were investigated for the flame structures, and compared with the theory. Three measurement methods were introduced to clarify the smoke characteristics, i.e. various gas concentrations, smoke density and thermophoretic sampling with transmission electron microscopy (TEM). The yield of carbon dioxide and the consumption of oxygen were proportional to the heat release rate of pool fires, but there is no trend on carbon monoxide emission. Smoke density of turbulent flames was exponentially increased with the heat release rate. The morphology of the soot particle was investigated to address the degree of soot maturing. The results show that the similar smoke morphology between an inverse jet flame and a pool fire exists despite of different combustion controlling mechanisms.

Characterization of Forest Fire Emissions and Their Possible Toxicological Impacts on Human Health

  • Kibet, Joshua;Bosire, Josephate;Kinyanjui, Thomas;Lang'at, Moses;Rono, Nicholas
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.113-121
    • /
    • 2017
  • In flight particulate matter particularly emissions generated by incomplete combustion processes has become a subject of global concern due to the health problems and environmental impacts associated with them. This has compelled most countries to set standards for coarse and fine particles due to their conspicuous impacts on environment and public health. This contribution therefore explores forest fire emissions and how its particulates affects air quality, damage to vegetation, water bodies and biological functions as architects for lung diseases and other degenerative illnesses such as oxidative stress and aging. Soot was collected from simulated forest fire using a clean glass surface and carefully transferred into amber vials for analysis. Volatile components of soot were collected over 10 mL dichloromethane and analyzed using a QTOF Premier-Water Corp Liquid Chromatography hyphenated to a mass selective detector (MSD), and Gas Chromatograph coupled to a mass spectrometer (GC-MS). To characterize the size and surface morphology of soot, a scanning electron microscope (SEM) was used. The characterization of molecular volatiles from simulated forest fire emissions revealed long chain compounds including octadec-9-enoic acid, octadec-6-enoic acid, cyclotetracosane, cyclotetradecane, and a few aromatic hydrocarbons (benzene and naphthalene). Special classes of organics (dibenzo-p-dioxin and 2H-benzopyran) were also detected as minor products. Dibenzo-p-dioxin for instance in chlorinated form is one of the deadliest environmental organic toxins. The average particulate size of emissions using SEM was found to be $11.51{\pm}4.91{\mu}m$. This study has shown that most of the emissions from simulated forest fire fall within $PM_{10}$ particulate size. The molecular by-products of forest fire and particulate emissions may be toxic to both human and natural ecosystems, and are possible precursors for various respiratory ailments and cancers. The burning of a forest by natural disasters or man-made fires results in the destruction of natural habitats and serious air pollution.

Effects of Engine Loads on Exhaust Emissions and Particulate Matter with Morphological Characteristics in a Common Rail 4 Cylinder Diesel Engine

  • Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2010
  • The purpose of this paper is to investigate the effects of fuel injection strategy and engine load on the structure and emissions characteristics of a DI diesel engine with 1.6L of piston displacement. In order to analyze the particulate matter (PM) and exhaust emissions characteristics in a direct injection diesel engine, the quantity of PM and exhaust emissions (including HC, CO and $NO_X$) were investigated under various injection strategies and engine loads. Two different injection strategies (one pilot/main injection and two pilots/main injection) was investigated under the various engine loads. A thermophoretic sampling method with a scanning electron microscope (SEM) were used to obtain the PM morphology (including primary particles, the size of the agglomerates, the number of agglomerates, the fractal dimension). The quantity of soot gradually increased with increasing engine load at both injection strategies. The primary particles in the PM agglomerates indicate that the average of the primary particle and radius of gyration increased as the engine load increased.

Assessment of Particulate Matters from an Exhaust Gas for Conventional and Low Temperature Diesel Combustion in a Compression Ignition Engine (압축 착화 엔진에서 기존 및 저온 디젤 연소에서 발생하는 배기가스의 입자상 물질에 관한 특성 비교)

  • Jung, Yongjin;Shin, Hyun Dong;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.183-186
    • /
    • 2012
  • The characteristics of particulate matters (PM) from an exhaust gas for conventional and low temperature diesel combustion (LTC) in a compression ignition engine was experimentally investigated by the elemental, thermogravimetric analysis. Morphology of PM was also studied by the transmission electron microscopy. PM for LTC shows that it contains more volatile hydrocarbons, which can be easily evaporated than conventional regime. PM for LTC is comprised of smaller primary particles.

  • PDF