• Title/Summary/Keyword: Soot generation

Search Result 26, Processing Time 0.024 seconds

Soot Generation System Utilizing High-Temperature Furnace (고온로를 이용한 매연발생장치)

  • Cho, Sanghwan;Park, Sunho;Nam, Younwoo;Choi, Yoo youl;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.55-58
    • /
    • 2013
  • A new soot particle generation system has been developed and tested. The soot generation system consists of two sections, a fuel supply and a soot production. In the fuel supply module, either liquid fuel precisely controlled by a syringe pump is mixed with preheated carrier gas and rapidly evaporated or gaseous fuel controlled by a MFC is diluted with dilution gas. The soot production module contains a heater that can raise the gas/fuel temperature up to $1400^{\circ}C$. The physical and chemical properties of produced soot particles depend on the type and concentration of fuel, the residence time, and temperature in the soot production section. The soot generation system will be utilized to produce well-defined soot particles for soot studies such as the evaluation of experimental sampling and analysis processes for the quantitative assessment of PM and BC from ships and the adverse health effects on pulmonary and cardiovascular systems of human body.

  • PDF

Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet (분위기 조건이 Decane 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.211-215
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet soot generation of decane fuel. To achieve this, this paper presents the experimental results on the decane droplet combustion conducted under various ambient pressure($P_{amb}$), and oxygen concentration($O_2$) conditions. At the same time, the experimental study was conducted in terms of soot volume fraction($f_v$) and its maximum value. Also, visualization of single fuel droplet was conducted by high resolution CCD camera and ambient pressure($P_{amb}$) and oxygen concentration($O_2$) was changed by control system. It was revealed that higher ambient pressure($P_{amb}$), and oxygen concentration($O_2$) enhanced the soot generation and improved the maximum soot volume fraction( $f_v$).

Soot Generation in a Coaxial Laminar Diffusion Flame (동축 층류 확산화염에서의 그을음 생성)

  • Shim, Sung-Hoon;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.9-15
    • /
    • 2002
  • Soot generation by combustion process has been investigated with objective of understanding of chemical reaction responsible for its formation in a coaxial laminar propane jet diffusion flame. For the direct photos, as the coflowing air flow rate is reduced, the area of soot luminous zone increases at first, then becomes smaller and smaller, and even disappears. The aspects of soot deposition can be acquired by using nine $15{\mu}m$ thin SiC fibers are positioned horizontally across the flame. Deposited soots on SiC fibers show the soot inception point and growth and soot oxidation zone in a typical propane diffusion. Soot is not generated anymore in a oxidizer deficient conditions of near-extinction and flame is fully occupied by transparent blue flame. It suggests that nonsooting pyroligneous blue reaction is being dominant in a oxidizer deficient ambience. In comparison with luminosities of SiC fibers and flame itself, indirect evidence is found that the process of soot nucleation and growth is endothermic reaction. It is remarkable that there exists two adjacent regions to have antithesis characteristics; one is exothermic reaction of blue flame and another endothermic reaction zone of soot formation.

  • PDF

Effect of Initial Diameter on the Soot Generation of Toluene Fuel Droplet (초기 직경 변화가 Toluene 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.261-267
    • /
    • 2015
  • The main purpose of this study is to provide the information of soot generation of toluene fuel droplet. To achieve this, this paper provides the experimental results on the different initial diameter of toluene droplet combustion characteristics conducted under equivalent ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) conditions. Visualization of single fuel droplet was performed with high resolution CCD camera and visualization system. At the same time, ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) were maintained by ambient condition control system. Soot volume fraction ($f_v$) was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The result of soot generation was almost the same regardless of initial droplet diameter since thermophoretic flux is not much changed under the same ambient conditions. Soot standoff ratio (SSR) of 2 mm diameter showed unstable variation characteristics due to the short available measuring time.

Soot Reduction in Diffusion Flames Using Dielectric Barrier Discharge (유전체 방전을 이용한 확산화염에서의 매연저감 특성)

  • Cha, Min-Suk;Kim, Kwan-Tae;Chung, Suk-Ho;Lee, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.27-32
    • /
    • 2003
  • The effect of non-thermal plasma on diffusion flames in co-flow jets has been studied experimentally by adopting a dielectric barrier discharge technique. The generation of streamers was enhanced with a flame due to increased reduced electric fields by high temperature burnt gas and the abundance of ions in the flame region. The effect of streamers on flame behavior reveals that the flame length was significantly decreased as the applied voltage increased and the yellow luminosity by the radiation of soot particles was also significantly reduced. The formation of PAH and soot was influenced appreciably by the non-thermal plasma, while the flame temperature and the concentration of major species were not influence much with the plasma generation. The results demonstrated that the application of non-thermal plasma can be a viable technique in controlling soot generation in flames with low power consumption in the order of 1 W.

  • PDF

Characterization of Soot Produced from Thermal Decomposition of Hydrocarbon Fuel (탄화수소연료의 열분해 Soot발생특성 분석에 관한 연구)

  • KIM, HAKDUCK;KIM, CHANGYEAN;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.747-752
    • /
    • 2016
  • Soot and harmful exhaust gas produced by liquid hydrocarbon fuel caused various environmental problems. In this study, soot characteristics produced by thermal decomposition of acetylene and diesel were analyzed, which are formed at different temperatures. These fuels were observed to produce particulate matters, and collected soot samples were observed by using TEM & SEM. These were found to be significantly different in structure and crystallinity.

Experimental Study on the Soot Formation Characteristics of Alkane-based Single Fuel Droplet (알케인계 단일 연료 액적의 Soot 생성 특성에 관한 실험적 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.80-86
    • /
    • 2017
  • The soot formation characteristics of various alkane-based single fuel droplets were studied in this work. Also, This study was performed to provide the database of the soot behavior and formation of alkane-based single fuel droplet. The experimental conditions were set to 1.0 atm of ambient pressure ($P_{amb}$), 21% of oxygen concentration ($O_2$) and 79% of nitrogen concentration ($N_2$). Combustion and soot formation of single fuel droplet was visualized by visualization system with high speed camera. At the same time, ambient pressure, oxygen concentration and nitrogen concentration were maintained by ambient condition control system. Soot formation characteristics was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The results of toluene fuel droplet showed the largest soot generation. Soot volume fraction ($f_v$) was almost the same under the identical fuel types regardless of various initial droplet diameter ($d_0$) since thermophoretic flux was not much changed under the same ambient conditions.

Predictions on the Flame Structure and Soot Distribution in the Coflowing Laminar Diffusion Flames (동층류 축대칭 확산화염내의 화염구조 및 매연입자 분포의 예측)

  • 이정기;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1583-1594
    • /
    • 1992
  • A numerical calculation on the flame structure and soot particle distribution in a coannular laminar diffusion flame was performed. Flame analysis model utilized basically flame sheet concepts, Shvab-Zel'dovich assumption, and one step overall irreversible reaction. It was also considered the variation of thermodynamics and transport properties, and the stagnation enthalpy was used for solving temperature field. Radiation was taken into account, since it has been found to be important in determining the flame temperature in sooty flames. For soot particle analysis, we adopted the coagulation, suface condensation, and the oxidation model in addition to tesner's two-step formation model. Equations for primary soot particle excluding the agglomeration process were solved. Based on the results, the regions of soot generation, growth, and oxidation in the flame have been observed and radiation strongly influenced flame temperature and soot distribution.

Characteristics of Carbonaceous Particles Derived from Coal-fired Power Plant and Their Reduction (석탄 화력발전소에서 발생하는 미연분의 특성분석 및 저감방법)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Geun-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1065-1073
    • /
    • 2006
  • The unturned carbon in fly ash, recently occurred in the coal-fired Yong Hung power station, caused some problems in ash utilization and boiler efficiency. This paper describes the analysis of unburned carbon and six coals, some tests performed at Yong Hung Boiler, and the results of combustion modification for the reduction of unburned carbon in fly ash. From the physical and chemical analysis of unburned carbon in fly ash, most particles were turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD(Chemical Percolation Devolatilization) model. The results showed that the higher potential was presented to Peabody, Arthur, Shenhua coals rather than other coals. It was necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unturned carbon in ash by increasing the excess air and changing the SOFA's yaw angle.

Combustion and Radiation Characteristics of Oxygen-Enhanced Inverse Diffusion Flame

  • Hwang, Sang-Soon;Gore, Jay-P
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1156-1165
    • /
    • 2002
  • The characteristics of combustion and radiation heat transfer of an oxygen-enhanced diffusion flame was experimentally analyzed. An infrared radiation heat flux gauge was used to measure the thermal radiation of various types of flames with fuel, air and pure oxygen. And the Laser Induced Incandescence (LII) technique was applied to characterize the soot concentrations which mainly contribute to the continuum radiation from flame. The results show that an oxygen-enhanced inverse diffusion flame is very effective in increasing the thermal radiation compared to normal oxygen diffusion flame. This seems to be caused by overlapped heat release rate of double flame sheets formed in inverse flame and generation of higher intermediate soot in fuel rich zone of oxygen-fuel interface, which is desirable to increase continuum radiation. And the oxygen/methane reaction at slight fuel rich condition (ø=2) in oxygen-enhanced inverse flame was found to be more effective to generate the soot with moderate oxygen availability.