• Title/Summary/Keyword: Soot characteristics

Search Result 307, Processing Time 0.02 seconds

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming (바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구)

  • Byungjin Lee;Subeen Wi;Dongkyu Lee;Sangyeon Hwang;Hyoungwoon Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2023
  • For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

Screening of Pyrus Species Resistant to Pear Psylla (Cacopsylla pyricola) (꼬마배나무이 (Cacopsylla pyricola) 저항성 배 육종재료 탐색)

  • Shin, Il Sheob;Kim, Dong Soon;Hong, Seong Sik;Kim, Jeong Hee;Cho, Kang Hee;Kim, Se Hee;Kim, Hyun Ran;Kim, Dae Hyun;Hong, Se Jin;Hwang, Jeong Hwan;Hwang, Hae Sung
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.491-496
    • /
    • 2011
  • Breeding for pear resistance to pear psylla (Cacopsylla pyricola) is one of important objective of the National Institute of Horticultural and Herbal Science breeding program. One hundred thirty three accessions from 15 Asian, Chinese and European pear species were investigated for their resistance against pear psylla. The pear psylla resistance was determined based on the following four characteristics: overwintering adult population, the number of eggs and nymphs, and the degree of soot. The different pear species showed varied resistance to pear psylla. Pyrus calleryana and P. betulaefolia indicated the highest antixenosis as ovipositional preference and antibiosis as nymphal feeding and were the most resistant genetic resources. Likewise the European pears (P. communis), 'Conference' and 'Cascade', exhibited little occurrence and damage by pear psylla. These were proved to be promising genetic materials for breeding resistant cultivars because they had good fruit quality and showed resistance to pear paylla. The observed population of overwintering adult, the number of eggs and nymphs of psylla had significant correlation each other.

Effect of Early Injection Strategy on the Combustion and Emission Characteristics of the Common-rail DI Diesel Engine (코먼레일 직접분사식 디젤 엔진의 조기 분사가 연소 및 배기특성에 미치는 영향)

  • Yoon, Seung-Hyun;Kim, Myung-Yoon;Kim, Dae-Sik;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.26-31
    • /
    • 2006
  • An experimental investigation of an early injection strategy was conducted on a small single cylinder common-rail DI diesel engine to reduce the oxides of nitrogen($NO_x$) emission. The main objectives of this study were to investigate the emissions, performance and combustion characteristics in a diesel engine with early and two-stage injections. The two- stage injection was conducted to reduce the wall-wetting of early injected fuels on the cylinder wall or to promote the ignition of premixed charge. The engine test was performed at conditions of 1500rpm, injection timing ranging from TDC to BTDC $80^{\circ}$. The experimental results show that $NO_x$ emissions were decreased in both cases of early injection and two stage injection compared to the conventional diesel combustion by the near TDC injection. However, soot and products of incomplete products (i.e. HC and CO) are slightly increased. Also, the second injection near TDC promoted the ignition of premixed fuel, therefore, IMEP was increased.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.

Effects of Bio-diesel blending rate on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with EGR rate (커먼레일식 디젤기관의 EGR율과 바이오디젤 혼합율에 따른 연소 및 배기 특성)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this study is to investigate the specific characteristics of combustion and exhaust emissions on a 4-cylinder common rail diesel engine as EGR rate and the rate of blended bio-diesel was altered. Bio-diesel fuel which is a sort of alternative fuels can be adapted to diesel engine directly without modifying. This study was performed to 2000rpm of engine speed with torque 30Nm while EGR rate and the rate of blended bio-diesel was changed. Decreasing combustion pressure and increasing the rate of heat were occurred when we had changed the EGR rate on the 20% of bio-diesel blended diesel fuel. The maximum pressure of combustion and the IMEP became higher as the EGR rate and the rate of blended bio-diesel were changed. Exhaust gas temperature was increased the higher rate of the blended bio-diesel under the fixed EGR rate. However, it went down as the EGR rate increased. The amounts of CO and Soot were reduced with increasing the rate of the blended bio-diesel without changing EGR rate and raised with increasing of the EGR rate. On the fixed EGR rate, NOx was increased along with growing the rate of the bio-diesel. On the other hand, it was decreased while EGR rate were going up.

Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel (Dimethyl Ether와 디젤의 거시적 분무 특성 비교)

  • Yu, J.;Lee, J. K.;Bae, C. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.

A study on characteristics of combustion and exhaust emissions on bio-diesel fuel in marine diesel generator engine (Low load centering) (선박용 디젤발전기에서 바이오연료의 연소 및 배기배출물 특성에 관한 연구 (저부하 영역 중심으로))

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.716-721
    • /
    • 2015
  • As the severity of environmental pollution has increased, restrictions on air pollution have been strengthened. Stringent regulations have been imposed, not only on marine diesel engines but also on automotive and industrial power plants. Thus, biofuels have been directly applied in practical engines and used in training ships for basic research. Even though a high biofuel percentage cannot be used in a training ship engine for safety reasons, because this type of engine is larger than those used in institutional laboratories, the results will provide important basic information that will allow organizations to determine the status of a large output. Biodiesel fuel was studied to determine how it would affect the combustion characteristics and exhaust emissions of a marine diesel generator engine. The main results can be summarized as follows. Because the physical and chemical compositions of biofuels are similar to those of diesel fuel, it was found that their practical use was possible in a training ship. The specific fuel consumption and NOx increased, whereas a tendency was found for carbon monoxide and soot to decrease. In addition, no significant pressure change difference was found between the diesel fuel and biofuels.

Current Status and Technical Development for Di-Methyl Ether as a New and Renewable Energy (신재생 에너지로서 DME 기술개발 현황)

  • Cho, Wonjun;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.355-362
    • /
    • 2009
  • Fuels based on petroleum will eventually run out in the near future. DME (Di-methyl Ether) is a clean energy source that can be manufactured from various raw materials such as natural gas, coal as well as biomass. As DME has no carbon-carbon bond in its molecular structure and is an oxygenate fuel, its combustion essentially generates no soot as well as no SOx. Because the physical properties of DME are similar to those of LPG, the LPG distribution infrastructure can be converted to use with DME. DME has such high cetane number of 55~60 that it can be used as a diesel engine fuel. Practical use of DME as a next-generation clean fuel or next-generation chemical feedstock is advancing in the fields of power generation, diesel engines, household use, and fuel cells, among others. The purpose of this paper is review the characteristics, standardization, status of research and development in domestic and foreign countries of DME.

Study on Flame Oscillations in Laminar Lift-off Butane Flames Diluted with Nitrogen (질소 희석된 부탄 부상화염에 있어서 화염진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.729-738
    • /
    • 2010
  • The characteristics of lifted butane flames diluted with nitrogen have been investigated experimentally in order to elucidate the mechanism of individual flame oscillation modes. Flame oscillations in laminar free-jet lift-off flames are classified into the following five regimes: a stabilized lift-off regime (I), a heat-loss-induced oscillation (II), a buoyancy-induced oscillation along with a heat-loss-induced oscillation (III), a combined form of an oscillation prior to blow-out and a heat-loss-induced oscillation (IV), and a combination of an oscillation prior to blow-out and a buoyancy-induced oscillation along with a heat-loss-induced oscillation (V). The characterization of the individual flame oscillations modes are presented and discussed using Strouhal numbers and their relevant parameters by the analysis of the power spectrum for temporal variation of the lift-off height.