• Title/Summary/Keyword: Soot Formation and Oxidation

Search Result 41, Processing Time 0.02 seconds

A Study on the Local Instantaneous Flame Temperature and Soot Formation and Oxidation in a Diesel Engine (디젤엔진에서 국소 순간 화염온도와 Soot 생성 및 산화에 관한 연구)

  • 이선봉;이태원;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The instantaneous flame temperature and soot formation and oxidation in a D. I. diesel engine are measured by using a two-color method. The proposed method based on the continuous spectral radiation from the soot particles in flames is applicable to industrial diesel engines without major modifications of their main characteristics. Measurements are performed at one location inside the combustion chamber of a D.I. diesel engine. Effects of different engine speeds and loads on flame temperature and KL factor which is an index of soot concentrations were examined. A little temperature change were observed with increasing engine speed, while increased with loads. The higher the flame temperature is, the lower the KL factor is.

  • PDF

Soot Formation and Oxidation of an Ethylene Laminar Diffusion Flame with Different Radiation Boundary Conditions (에틸렌 층류 확산화염의 복사경계조건에 따른 매연생성 및 산화특성)

  • Lee, Chun-Beom;Nam, Youn-Woo;Lee, Won-Nam;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.11-18
    • /
    • 2003
  • The soot formation and oxidation characteristics with different radiation boundary conditions have been studied experimentally in a co-flow ethylene/air laminar diffusion flame. The boundary conditions are two cases, one is a fully refractive radiation boundary condition by a polished aluminum cylinder(AL) and the other is a fully absorbing radiation boundary condition by a black body cylinder(BB). The AL case compared with BB condition show the lower inception point, denser soot volume fraction, wider and longer annular soot area owing to the reabsorption of radiating energy.

  • PDF

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.

The addition of nitrogen oxides for improving the rate of catalytic ozone-induced oxidation of soot (산화질소 첨가에 의한 오존 기반 탄소입자상물질 촉매연소반응 속도의 개선)

  • Lee, Namhun;Park, Tae Uk;Lee, Jin Soo;Lee, Dae-Won
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, we examined the effect of NO addition on the ozone-induced soot oxidation activity of $LaMnO_3$ perovskite catalysts. The addition of 10~20% NO ($NO_2$) with respect to the concentration of ozone effectively enhanced the rate of ozone-induced soot oxidation rate over $LaMnO_3$. However, the excessive addition of NO ($NO_2$) was detrimental to ozone-induced soot oxidation activity. It is supposed nitrogen oxides would adsorb on the catalyst and then react with carbon-oxygen species developed on soot surface, but an excessive addition of nitrogen oxide would inhibit the formation of carbon-oxygen species, which is a key intermediate in the reaction, and consequently suppress the oxidation rate of soot.

Numerical Analysis for the Detailed Structure and the Soot Formation Mechanism in Counterflow Ethylene-Air Nonpremixed Flame (대향류 에틸렌/공기 비예혼합 화염의 구조 및 Soot 생성 메커니즘 해석)

  • 임효준;김후중;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.40-54
    • /
    • 1999
  • The flame structure and soot formation in the counterflow Ethylene-Air nonpremixed flame are numerically analyzed. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of benzene and acetylene. In terms of the centerline velocity and the soot volume fraction, the predicted results are compared with the experimental data. The detailed discussion has been made for the sensitivity of model constants and the deficiencies of the present model. Numerical results indicated that the acetylene addition to the soot surface plays the dominant role in the soot mass growth for the counterflow nonpremixed flame.

  • PDF

Temperature Distribution in Ethylene Diffusion Flames Based on Measurement Techniques;Comparison of Thermocouple and Tow-Color Pyrometry (측정방법에 따른 에틸렌 확산화염의 온도분포;열전대 및 이색법 측정 결과 비교)

  • Lee, Won-Nam;Na, Yong-Dae;Lee, Bum-Ky;Park, Seong-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.175-182
    • /
    • 2000
  • Flame temperatures were measured and compared using a rapid insertion technique and a two-color pyrometry with Abel inversion process in co-flow ethylene diffusion flames. The measured line-of-sight temperature showed very limited usefulness in understanding the detailed soot formation/oxidation process in a co-flow diffusion flame. The flame temperatures could be measured with reasonable accuracy for the soot laden regions in ethylene diffusion flames using two-color pyrometry with an Abel inversion technique. Two-color-pyrometry with Abel inversion was demonstrated as a useful temperature measurement technique for co-flow diffusion flames, expecially under pressure conditions, where a thermocouple is not applicable. The soot volume fraction could be also obtained using tow-color pyrometry with Abel inversion, which provides important information for understanding the soot formation/oxidation mechanism in diffusion flames.

  • PDF

Oxidation of Soot Particles with O Radicals Generated in a AC Streamer Corona Discharge (AC 스트리머 코로나 방전으로 생성된 O 라디칼과 매연 입자의 산화반응)

  • Kim, Pil-Seung;Lee, Kyo-Seung;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Carbon soot emission from combustion processes, especially from diesel engines, is a subject of growing concern since soot is known to seriously affect human health. Efforts have been made to oxidize soot particles utilizing Non-Thermal Plasma(NTP) techniques. When oxygen is carried into a plasma device, electrons generated by the plasma dissociate the oxygen, resulting in the formation of oxygen atoms. These highly activated atoms, called O radicals, are known as strong oxidizing agent. This paper presents concentration variations of CO and $CO_2$ at the exit of the plasma device, resulting from the soot oxidation by O radicals, with variations of inlet oxygen concentration, gas temperature, and gas flow rate. Based on the data, Arrehenious rate constants of reactions between C(s)+O and C(s)+O+O were proposed.

  • PDF

Soot and PAH Formation Characteristic of Concentric Co-Flow Diffusion Flames (이중동축류 확산화염에서의 매연 및 PAH 생성 특성)

  • Lee, Won-Nam;Nam, Youn-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.178-185
    • /
    • 2005
  • The synergistic effect of ethylene/propane mixture on soot formation is studied experimentally using a concentric co-flow diffusion burner, which provides the stratified fuel mixture. The soot volume fraction, soot particle diameter, number density and PAH concentrations are measured with various fuel supply configurations and compared to the homogeneously mixed case. When propane is supplied through the inner nozzle, an increase of soot formation is observed. However, when propane is supplied through the outer nozzle, a decrease is observed. The reaction path of PAH's formed from the pyrolysis process of propane is likely to be responsible to the observed differences. When propane is supplied through the outer nozzle, PAH's are formed in the relatively near oxidation region and exposed to the oxidization environment; on the other hand, when propane is supplied through the inner nozzle, PAH's are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the com position of the mixture but also by the way of mixing.

Unsteady Flamelet Modeling for Flame Structure and Soot Formation of Lanimar Non-premixed CH4/Air Flame (비정상 화염편 모델을 이용한 대기압 층류 비예혼합 CH4/Air 화염장의 매연입자 생성 특성 및 화염구조 해석)

  • Kim, Taehoon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.137-138
    • /
    • 2012
  • The two-equation soot model based on the transient laminar flamelet model is implemented for soot formation of laminar non-premixed $CH_4/Air$ flame with detailed chemical reaction mechanism and complex thermodynamic properties. The soot model represents nucleation, growth and oxidation with gas-phase chemistry. This represented unsteady flamelet soot model has been tested and compared using well verified reference calculation result obtained solving the Full Transport Equations method.

  • PDF

Soot Formation Characteristics on the Instability of Laminar Diffusion Flames (층류확산화염의 불안정성에 대한 매연생성 특성의 역할)

  • Nam, Youn-Woo;Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.74-81
    • /
    • 2010
  • In this study, soot formation characteristics on the instability of laminar diffusion flames were investigated experimentally using a concentric co-flow burner. When a small amount of air was supplied through an inner nozzle, a stable propane laminar diffusion flame became unstable and began to oscillate mainly due to the dilution effect. The increase of air flow rate transformed an oscillating non-sooting flame into a stable nonsooting flame. When the air flow rate was continuously increased an inner flame was formed and the flame was changed to an oscillating sooting flame, an oscillating non-sooting flame and finally a stable non-sooting hollow flame. When the air flow rate was decreased, a non-sooting hollow flame was eventually changed back to a stable non-sooting flame. The presence of an inner flame, however, altered the soot formation characteristics of a flame. More soot production was observed with the presence of an inner flame. The increased or decreased soot formation/oxidation rates, the radiation heat loss, and the heating effect of inner flames are most likely to be responsible for the observed instability of laminar diffusion flames.