• Title/Summary/Keyword: Soot Formation

Search Result 132, Processing Time 0.021 seconds

Analysis of Soot Formation Characteristics in Diffusion Flames with Soot Particle Temperature Measurement (매연입자 온도 측정에의한 확산화염의 매연생성 특성 해석)

  • Lee, Won-Nam;Chung, Young-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.241-249
    • /
    • 1999
  • Soot particle temperatures in co-flow diffusion flames have been measured using a two-color pyrometry at the pressure of 0.2 MPa(2 atm). The measured soot particle temperatures along with the integrated soot volume fractions are analyzed to understand soot formation characteristics. At 0.2 MPa, the addition of small amount of air into ethylene do not change the soot particle temperature in soot formation regions. This result showed that the increase of soot formation with addition of air is mostly due to the chemical effect of the added air, such as the increased role of C3 chemistry during the early stage of soot inception process. The addition of sufficient air into ethylene, however, changes soot particle temperatures and the understanding of soot formation characteristics becomes complicated. Measured soot particle temperatures also showed that there is no significant temperature effect for the synergistic effect of ethylene/propane mixture on soot formation.

  • PDF

Effects of Oxidant Addition to Fuel on Soot Formation of Laminar Diffusion Flames (동축류 확산화염의 매연생성에 미치는 연료에 첨가된 산화제의 영향)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • The influence of oxidant addition on soot formation is investigated experimentally with ethylene, propane and mixture fuel co-flow diffusion flames. Oxidant addition into fuel shows the increase of integrated soot volume fractions for ethylene, ethylene/ethane and ethylene/methane mixture flames. However, the increase of integrated soot volume fraction with oxidant addition was not significant for propane and ethylene/propane mixture flames. This discrepancy is explained with $C_2\;and\;C_3$ chemistry at the early stage of soot formation process. The oxidant addition increases the concentration of $C_3H_3$ in the soot formation region, and therefore, enhances soot formation process. A new soot formation rate model that includes both dilution effect and chemical effect of oxygen is suggested to interpret the increase of integrated soot volume fractions with oxidant addition into ethylene. Also, the role of adiabatic flame temperature for the chemical effect of oxygen addition into fuel was reviewed. The influence of oxidant or diluent addition into fuel on soot formation process are the fuel dilution effect, the adiabatic flame temperature altering effect and/or the chemical effect of oxygen. Their relative importance could change with fuel structure and adiabatic flame temperature.

  • PDF

Investigation of Soot Formation in a D.I. Diesel Engine by Using Laser Induced Scattering and Laser Induced Incandescence

  • Lee, Ki-Hyung;Chung, Jae-Woo;Kim, Byung-Soo;Kim, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1169-1176
    • /
    • 2004
  • Soot has a great effect on the formation of PM (Particulate Matter) in D.I. (Direct Injection) Diesel engines. Soot in diesel flame is formed by incomplete combustion when the fuel atomization and mixture formation were poor. Therefore, the understanding of soot formation in a D.I. diesel engine is mandatory to reduce PM in exhaust gas. To investigate soot formation in diesel combustion, various measurements have been performed with laser diagnostics. In this study, the relative soot diameter and the relative number density in a DJ. engine was measured by using LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) methods simultaneously which are planar imaging techniques. And a visualization D.I. diesel engine was used to introduce a laser beam into the combustion chamber and investigate the diffusion flame characteristics. To find the optimal condition that reduces soot formation in diesel combustion, various injection timing and the swirl flow in the cylinder using the SCV (Swirl Control Valve) were applied. From this experiment, the effects of injection timing and swirl on soot formation were established. Effective reduction of soot formation is possible through the control of these two factors.

Numerical Analysis for the Soot Formation Processes in Acetylene-Air Nonpremixed Turbulent Jet Flame (아세틸렌/공기 비예혼합 난류 제트화염의 Soot 생성에 대한 수치해석)

  • 김후중;김용모;윤명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.80-89
    • /
    • 2002
  • The flame structure and soot formation in Acetylene-Air nonpremixed jet flame are numerically analyzed. We employed two variable approach to investigate the soot formation and oxidation processes. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of pyrene and acetylene. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical model used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reaction flow field.

Experimental Study on the Soot Formation Characteristics of Alkane-based Single Fuel Droplet (알케인계 단일 연료 액적의 Soot 생성 특성에 관한 실험적 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.80-86
    • /
    • 2017
  • The soot formation characteristics of various alkane-based single fuel droplets were studied in this work. Also, This study was performed to provide the database of the soot behavior and formation of alkane-based single fuel droplet. The experimental conditions were set to 1.0 atm of ambient pressure ($P_{amb}$), 21% of oxygen concentration ($O_2$) and 79% of nitrogen concentration ($N_2$). Combustion and soot formation of single fuel droplet was visualized by visualization system with high speed camera. At the same time, ambient pressure, oxygen concentration and nitrogen concentration were maintained by ambient condition control system. Soot formation characteristics was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The results of toluene fuel droplet showed the largest soot generation. Soot volume fraction ($f_v$) was almost the same under the identical fuel types regardless of various initial droplet diameter ($d_0$) since thermophoretic flux was not much changed under the same ambient conditions.

The Effect of Engine Oil Degradation and Piston Top Ring Groove Temperature on Carbon Deposit Formation Part II - The Deposit Formation Characteristics of Diesel Engine (엔진 오일 열화와 피스톤 톱링 그루브 온도가 카본 디포짓 형성에 미치는 영향 Part II-디젤 엔진의 디포짓 형성 특성)

  • 김중수;민병순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.108-113
    • /
    • 1998
  • In order to investigate the characteristics of top ring groove deposit formation in diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, soot content in engine oil was selected as a main parameter for evaluating oil degradation. Deposit formation is highly related to soot content in lubricating oils. And high soot content oil accelerates deposit formation even in low temperature region below 26$0^{\circ}C$. In low temperature region below 26$0^{\circ}C$, deposit formation rate is mainly affected by top ring groove temperature. However, in high temperature region above 26$0^{\circ}C$, deposit formation rate is affected by soot content as well as top ring groove temperature. Therefore, soot content as well as top ring groove temperature should be kept a certain level in order to prevent troubles due to carbon deposit formation.

MODELLING STUDY OF THE EFFECT OF CHEMICAL ADDITIVES ON SOOT PRECURSORS REDUCTION

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.501-508
    • /
    • 2006
  • The effect of chemical additives, such as dimethyl ether(DME), ethanol, carbon disulfide on the soot formation were examined numerically. ill this study, the Frenklach soot mechanism was used as a base mechanism to predict the soot formation in the ethane flame. The combination of Westbrook's DME mechanism, Marinov's ethanol mechanism, and chemical kinetic mechanism for hydrogen sulfide and carbon disulfide flames was made with the base mechanism because the DME, ethanol, $CS_2$ additives are added into the ethane fuel. CHEMKIN code was used as a numerical analysis software to simulate the effect of chemical additives on reduction of the polycyclic aromatic hydrocarbons(PAH's) which are soot precursors. From the numerical results it is observed that addition of DME, ethanol and $CS_2$ into ethane fuel can reduce PAH species significantly. That means theses additives can reduce soot formation significantly. Results also strongly suggest suppression of soot formation by these additives to be mainly a chemical effect. Hand OH radicals may be the key species to the reduction of PAH species for additives.

PAH and Soot Formation Characteristics of DME/Ethylene Fuel (DME/에틸렌 연료의 PAH 및 매연의 생성 특성)

  • Yoon, Seung-Suk;Lee, Sang-Min;Chung, Suk-ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.171-177
    • /
    • 2005
  • In order to investigate the effect of dimethyl ether (DME) on PAH and soot formation, the fuel has been mixed to the counter-flow diffusion flames of ethylene. Laser-induced incandescence and laser-induced fluorescence techniques were employed to measure relative concentrations of soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that even though pure DME flame produces the minimal amount of PAH and soot, the mixture fuel of DME and ethylene could increase PAH and soot formation, as compared to those of pure ethylene flame. This implies that even though DME has been known to be a clean fuel for soot formation, the mixture fuel of DME and the hydrocarbon fuel could produce enhanced production of soot. Numerical simulation demonstrated that methyl (CH$_{3}$) radical generated by the initial pyrolysis of DME can be contributed to the enhancement of PAH and soot formation, through the formation of propargyl (C$_{3}$H$_{3}$) radical.

Characteristics of PAH and Soot Formation for Various Fuels in Coflow Diffusion Flame (동축류 확산화염에서 다양한 연료에 따른 PAH 및 매연의 생성특성)

  • Yoon S. S.;Ahn H. N.;Lee S. M.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.107-110
    • /
    • 2003
  • Characteristics of PAH and soot formation in coflow diffusion flames of methane, methane, propane, and ethylene have been experimentally studied to investigate the temperature and fuel structure effect on soot formation. PAH and soot images were acquired by applying PAH LIF and LII techniques, respectively and temperature was measured using R-type thermocouple. Direct photographs of soot particles have also been taken by transmission electron microscopy (TEM) through a thermophoretic sampling. Comparison of PAH and soot formation between the aliphatic fuels has shown the importance of fuel structure effect in diffusion flames.

  • PDF

Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4$-Air Diffusion Flame (화염편모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석)

  • Kim, Gun-Hong;Kim, Hu-Jung;Kim, Yong-Mo;Kim, Seung-Ku
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.3-9
    • /
    • 2003
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept for simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

  • PDF