• Title/Summary/Keyword: Sonoluminescence

Search Result 19, Processing Time 0.027 seconds

Sonoluminescence Characteristics from Submicron Size bubbles (마이크로 이하 기포로부터의 소노루미네센스 특성)

  • Byun, Ki-Taek;Karng, Sarng-Woo;Kim, Ki-Young;kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1201-1206
    • /
    • 2004
  • Sonoluminescence (SL) characteristics such as pulse shape, radiance and spectrum radiance from submicron bubbles were investigated. In this study, a set of analytical solutions of the Navier-Stokes equations for the gas inside bubble and equations obtained from mass, momentum and energy equations for the liquid layer adjacent the bubble wall were used to estimate the gas temperature and pressure at the collapse point, which are crucial parameters to determine the SL characteristics. Heat transfer inside the gas bubble as well as at the liquid boundary layer, which was not considered in the most of previous studies on the sonoluminescence was taken it into account in the calculation of the temperature distribution inside the bubble. It was found that bremsstrahlung is a very possible mechanism of the light emission from either micron or submicron bubbles. It was also found that the peak temperature exceeding $10^{6}$ K in the submicron bubble driven at 1 MHz and 4 atm may be due to the rapid change of the bubble wall acceleration near the collapse point rather than shock formation.

  • PDF

Enhancement of Ultrasonic Sonoluminescence Image Using Digital Image Processing (디지털 영상처리를 이용한 초음파 소노루미네센스 이미지 개선)

  • Kim, Jung-Soon;Jo, Mi-Sun;Mun, Kwan-Ho;Ha, Kang-Lyeol;Jun, Byung-Doo;Kim, Moo-Joon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.409-414
    • /
    • 2007
  • In spite of many studies of the acoustic field visualization by using sonoluminescence phenomena, the visualization method has not been used widely because it needs high acoustic intensity to get the luminescence intensity enough to observe. Recently, the digital camera with high resolution and big memory makes it possible to get the digital image data even though the brightness of the image is too weak to observe with naked eyes. In this study we investigated the variation of sonoluminescence intensity with the acoustic intensity from an ultrasonic transducer. From this result, the inverse function, which makes the tendency of the variation to linear, was obtained. Using the order of the inverse function, we can expect a matching function. Applying the matching function to digital image data, the distribution of the histogram could be controlled appropriately and the image from relatively weak acoustic intensity could be enhanced by the method.

Color Changes of Multi-Bubble Sonoluminescence Due to Metallic Ions in Water (금속 이온이 다중기포 Sonoluminescence 스펙트럼에 미치는 영향 연구)

  • Han, Moon-Su;Lee, Jae-Wook;Baek, Seung-Chan;Baek, Jung-Hwan;Kim, Young-H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.111-117
    • /
    • 2010
  • Sonoluminescence (SL) is the light emitting phenomenon accompanied with ultrasonic cavitation in liquid. It attracts many interests because physics behind it remains uncertain and few applications have appeared. It has been known that the color of SL changes in solutions which include metallic ions. In the present work, colors of SL in alkali metallic and alkaline earth metallic ions were considered. RGB component was used to analyze the color of SL. By using RGB component, it was found that color of SL in metallic solution can be resolved into color of SL in pure water and flame color of metal which is different from high intensity color of line spectrum of alkaline earth metal. From this result, influence of metallic ion on SL and the temperature on violent collapsing of cavitation bubble was discussed.

Evaluate the Effect of Megasonic Cleaning on Pattern Damage (메가소닉 세정시 발생되는 패턴손상 최소화에 대한 연구)

  • Yu, Dong-Hyun;Ahn, Young-Ki;Ahn, Duk-Min;Kim, Tae-Sung;Lee, Hee-Myoung;Kim, Jeong-In;Lee, Yang-Lae;Kim, Hyun-Se;Lim, Eui-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2511-2514
    • /
    • 2008
  • As the minimum feature size decreases, techniques to avoid contamination and processes to maintain clean wafer surfaces have become very important. The deposition and detachment of nanoparticles from surfaces are major problem to integrated circuit fabrication. Therefore, cleaning technology which reduces nanoparticles is essential to increase yield. Previous megasonic cleaning technology has reached the limits to reduce nanoparticles. Megasonic cleaning is one of the efficiency method to reduce contamination nanoparticle. Two major mechanisms are active in a megasonic cleaning, namely, acoustic streaming and cavitation. Acoustic streaming does not lead to sufficiently strong force to cause damage to the substrates or patterns. Sonoluminescence is a phenomenon of light emission associated with the cavitation of a bubble under ultrasound. We studied a correlation between sonoluminescence and sound pressure distribution for the minimum of pattern damage in megasonic cleaning.

  • PDF

Measurement of sonoluminescence intensity for evaluation of the amount of radical generated by ultrasonic cavitation (초음파 캐비테이션에 의해 생성되는 라디칼의 발생량 평가를 위한 소노루미네센스 발광강도의 측정)

  • Jungsoon Kim;Moojoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • The hydroxyl radical (·OH) and superoxide anion radical (·O2- ) generated by the shock wave generated during ultrasonic cavitation collapse in TiO2 suspension are highly useful because they can sterilize and disinfect. For practical use as a sterilization method without any chemicals, in this study, we proposed a method for evaluating the generation of radicals generated by high-intensity ultrasound emitted to titanium dioxide suspension. In the proposed method, the sonoluminescence phenomenon, which emits light by ultrasonic cavitation decay energy, was utilized, and the degree of radical generation was evaluated through the amount of light energy by sonoluminescence. As a result, even at a low concentration of titanium dioxide of 0.02 wt%, light energy 5 times higher than in the absence of titanium dioxide was received. After that, as the concentration increased by 0.1 wt%, the luminous intensity of sonoluminescence increased linearly by about 14.8 × 10-12 lm. Therefore, it was confirmed that the radicals generated by radiating high-intensity ultrasound to the titanium dioxide suspension increased linearly as the concentration of titanium dioxide increased within a given concentration range.

Chemical Reactions inside a Sonoluminescing Gas Bubble (빛을 발산하는 기포내에서의 화학반응)

  • Karng, Sarng-Woo;Kim, Hong-Un;Lim, Kyung-Hee;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.487-492
    • /
    • 2001
  • The Multi-bubble sonoluminescence(MBSL) provides a unique environment, that is, very high temperature$(5,000\sim20,000K)$ and high pressure$(500\sim10,000\;atm)$. However, the mechanism for the MBSL has been elusive. Recently, it has been suggested that the mechanism be continuous and also of discrete peaks that are caused by molecular transitions. In this article, this mechanism has been examined for the Ar/water system by the combined hydrodynamics and molecular transition.

  • PDF

Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions

  • Hwang, Cha-Hwan;Park, Jong-Pil;Song, Mi-Yeon;Lee, Jin-Ho;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2207-2211
    • /
    • 2011
  • Colloidal cadmium telluride (CdTe) quantum dots (QDs) and their nanoparticles have been synthesized by one pot sonochemical reactions under multibubble sonoluminescence (MBSL) conditions, which are quite mild and facile compared to other typical high temperature solution-based methods. For a typical reaction, $CdCl_2$ and tellurium powder with hexadecylamine and trioctylphosphine/trioctylphosphineoxide (TOP/TOPO) as a dispersant were sonicated in toluene solvent at 20 KHz and a power of 220W for 5-40 min at 60 $^{\circ}C$. The sizes of CdTe particles, in a very wide size range from 2 nm-30 ${\mu}m$, were controllable by varying the sonicating and thermal heating conditions. The prepared CdTe QDs show different colors from pale yellow to dark brown and corresponding photoluminescence properties due mainly to the quantum confinement effect. The CdTe nanoparticles of about 20 nm in average were found to have band gap of 1.53 eV, which is the most optimally matched band gap to solar spectrum.

The Synthesis of CuInS2 Nanoparticles by a Simple Sonochemical Method

  • Park, Jae-Young;Park, Jong-Pil;Hwang, Cha-Hwan;Kim, Ji-Eon;Choi, Myoung-Ho;Ok, Kang-Min;Kwak, Ho-Young;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2713-2716
    • /
    • 2009
  • $CuInS_{2}$ nanoparticles were synthesized by a simple sonochemical method; First, Cu nanoparticles were prepared from $CuInS_{2}$ in methanol solution by a one pot reaction through the sonochemistry under multibubble sonoluminescence (MBSL) conditions. Second, the resulting Cu nanoparticles were treated with $InCl_3{\cdot}4H_2O$ and $CH_3CSNH_2$ (thioacetamide) at the same MBSL conditions to synthesize $In_2S_3$-coated Cu nanoparticles in methanol solution. Then, they were transformed into $CuInS_{2}$ (CIS) nanoparticles of 20 $\sim$ 40 nm size in diameter by thermal heating at 300 ${^{\circ}C}$ for 2 hr. The prepared CIS nanoparticles, of which band gap is 1.44 eV, were investigated by X-ray diffractometer, UV-Vis spectrophotometer, inductively coupled plasma spectrometer, and high resolution-transmission electron microscope.