• Title/Summary/Keyword: Sonobuoy Deployment Optimization

Search Result 3, Processing Time 0.02 seconds

Development of a Simulator for Submarine Path Estimation and Optimization of Sonobuoy Deployment Patterns (잠수함 경로 추정 및 소노부이 투하 패턴 최적화를 위한 시뮬레이터 개발)

  • Jaeho Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.567-580
    • /
    • 2024
  • Due to specificity in the underwater environment, the difficulty of detecting submarine and the threat of submarine are increasing. The probability of detecting a submarine can be increased by estimation submarine path and optimizing sonobuoy deployment. In this paper, marine data collection, dynamics of submarine, submarine tracking path modeling, acoustic wave propagation modeling, detection probability modeling are applied in the simulator as similar to reality as possible. A simulator is developed to design submarine path estimation and sonobuoy deployment optimization scenario and to check result according to the scenario.

Online Sonobuoy Deployment Method with Bayesian Optimization for Estimating Location of Submarines (잠수함 위치 추정을 위한 베이지안 최적화 기반의 온라인 소노부이 배치 기법)

  • Kim, Dooyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2022
  • Maritime patrol aircraft is an efficient solution for detecting submarines at sea. The aircraft can only detect submarines by sonobuoy, but the number of buoy is limited. In this paper, we present the online sonobuoy deployment method for estimating the location of submarines. We use Gaussian process regression to estimate the submarine existence probability map, and Bayesian optimization to decide the next best position of sonobuoy. Further, we show the performance of the proposed method by simulation.

Optimal deployment of sonobuoy for unmanned aerial vehicles using reinforcement learning considering the target movement (표적의 이동을 고려한 강화학습 기반 무인항공기의 소노부이 최적 배치)

  • Geunyoung Bae;Juhwan Kang;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.214-224
    • /
    • 2024
  • Sonobuoys are disposable devices that utilize sound waves for information gathering, detecting engine noises, and capturing various acoustic characteristics. They play a crucial role in accurately detecting underwater targets, making them effective detection systems in anti-submarine warfare. Existing sonobuoy deployment methods in multistatic systems often rely on fixed patterns or heuristic-based rules, lacking efficiency in terms of the number of sonobuoys deployed and operational time due to the unpredictable mobility of the underwater targets. Thus, this paper proposes an optimal sonobuoy placement strategy for Unmanned Aerial Vehicles (UAVs) to overcome the limitations of conventional sonobuoy deployment methods. The proposed approach utilizes reinforcement learning in a simulation-based experimental environment that considers the movements of the underwater targets. The Unity ML-Agents framework is employed, and the Proximal Policy Optimization (PPO) algorithm is utilized for UAV learning in a virtual operational environment with real-time interactions. The reward function is designed to consider the number of sonobuoys deployed and the cost associated with sound sources and receivers, enabling effective learning. The proposed reinforcement learning-based deployment strategy compared to the conventional sonobuoy deployment methods in the same experimental environment demonstrates superior performance in terms of detection success rate, deployed sonobuoy count, and operational time.