• Title/Summary/Keyword: Sonic Limitation

Search Result 6, Processing Time 0.021 seconds

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

Theoretical Analysis of Factors Affecting to Heat Transfer Limitation in Screen Mesh Wick Heat Pipe (스크린 메쉬윅 히트파이프의 열전달한계에 영향을 미치는 인자의 이론적 해석)

  • 이기우;노승용;박기호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.880-889
    • /
    • 2002
  • The purpose of the present study is to examine the factors affecting the heat transfer limitations of screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6 mm, and mesh numbers are 50, 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, capillary limitation, entrainment limitation, sonic limitation and boiling limitation we analyzed by theoretical design method of a heat pipe. As some results, the capillary limitation in small diameter of heat pipe is largely affected by mesh number and wick layer.

Determination of Elastic Modulus by Time Average ESPI and Euler-Bernoulli Equation (Time Average ESPI와 Euler-Bernoulli 방정식에 의한 탄성계수 측정)

  • Kim, Koung-Suk;Lee, Hang-Seo;Kang, Young-June;Kang, Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.69-74
    • /
    • 2007
  • The paper proposes a new sonic resonance test for a elastic modulus measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI) and Euler-Bernoulli equation. Previous measurement technique of elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The proposed technique is able to give high accurate elastic modulus of materials through a simple experiment set up and analysis.

Theoretical Analysis on the Heat Transport Limitation of a Sintered Metal Wick Heat Pipe (소결윅 히트파이프의 열수송 한계에 관한 이론적 해석)

  • Kim Keun-Bae;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitation of a copper powder sintered wick heat pipe was performed. The heat pipe diameter was 8mm and water was used for working fluid. The particle diameter was classified by 5 different meshes, and each capillary pressures and heat transport limitations. thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius($r_c$), porosity($\varepsilon$), Permeability (K). The wick capillary limitation was increased according as the particle diameter and the wick thickness and the operating temperature were increased. As the porosity and the capillary radius were larger. then the heat transport limitation was higher. The thermal resistance was greatly increased according as the wick thickness was increased.

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

Applications of artificial neural networks;Detections of the location of a sound-source

  • Oobayashi, Koji;Yuan, Yan;Aoyama, Tomoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1036-1041
    • /
    • 2003
  • Non-destruction examinations are required in medical sciences and various engineering now. We wish to emulate the examinations in very simplified experiments. It is an educational program. We show a neural network analysis to predict the locations of a sound-source or a body irradiated by sound-waves in audio-region. The sound is an interest flux, and it enables to clear local-structures in a non-transparent space. However, the sound-propagation equations are not solved easily, therefore, we consider to adopt multi-layer neural-networks instead of the direct solutions. We used detected intensities and coordinates for input data and teaching data. A neural network learned them. The neural-network analysis decomposed the distance of 50cm. The resolution is rather rough; however, it is caused by the limitation of our equipments. Since there is no problem in the neural network processing, if we could revise experiments, then, progress of the resolution would be got. Thus, the proposed method functioned as an educational and simplified non-destruction examination.

  • PDF