• Title/Summary/Keyword: Sonar cross section(SCS)

Search Result 2, Processing Time 0.017 seconds

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Acoustic Target Strength Analysis for Underwater Vehicles Covering Near Field Spherical Wave Source Originated Multiple Bounce Effects (근접장 구면파 소스의 다중 반사 효과를 고려한 수중함의 음향표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.196-209
    • /
    • 2010
  • For the analysis of Acoustic Target Strength(TS) that indicates the scattered acoustic intensity from the underwater vehicles, an analysis program that is applicable to scatterers insonified by spherical wave source in near field is developed. In this program, the Physical Optics(PO) method is embedded as a base component. To increase the accuracy of the program, multiple bounce effects based on Geometrical Optics(GO) method are applied. To implement multiple bounce effects, GO method is used together with PO method. In detail, GO method has a concern in the evaluation of the effective area, and PO method is involved in the calculation of Acoustic Target Strength for the final effective area that is evaluated by GO method. For the embodiment of near field spherical wave source originated multiple bounce effects, image source concept is implemented additively to the existing multiple bounce algorithm which assumes plane wave insonification. Various types of models are tested to evaluate the reliability of the developed program and finally, a submarine is analyzed as an arbitrary scatterer.