• Title/Summary/Keyword: Sonar System Development

Search Result 109, Processing Time 0.025 seconds

Seabed Classification Using the K-L (Karhunen-Lo$\grave{e}$ve) Transform of Chirp Acoustic Profiling Data: An Effective Approach to Geoacoustic Modeling (광역주파수 음향반사자료의 K-L 변환을 이용한 해저면 분류: 지질음향 모델링을 위한 유용한 방법)

  • Chang, Jae-Kyeong;Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool;Park, Gun-Tae;Yoo, Hai-Soo;Yang, Sung-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.158-164
    • /
    • 1998
  • We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.

  • PDF

MOving Spread Target signal simulation (능동 표적신호 합성)

  • Seong, Nak-Jin;Kim, Jea-Soo;Lee, Snag-Young;Kim, Kang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.30-37
    • /
    • 1994
  • Since the morden targets are of high speed and getting quiet in both active and passive mode, the necessities of developing advanced SONAR system capable of performing target motion analysis (TMA) and target classification are evident. In order to develop such a system, the scattering mechanism of complex bodies needs to be, some extent, fully understood and modeled. In this paper, MOving Spread Target(MOST) signal simulation model is presented and discussed. The model is based on the highlight distribution method, and simulates pulse elongation of spread target, doppler effect due to kinematics of the target as well as SONAR platform, and distribution target strength of each highlight point (HL) with directivity. The model can be used in developing and evaluating advanced SONAR system through system simulation, and can also be used in the development of target state estimation algorithm.

  • PDF

Development of the autnomous road vehicle (무인 자동차 개발 연구)

  • 최진욱;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.88-93
    • /
    • 1993
  • This paper introduces an ARV(Autonomous Road Vehicle) system which can run on orads without help of a driver by detecting road boundaries through computer vision. This vehicle can also detect obstacles in front through sonar sensors and infrared sensors. This system largely consists of a handle steering module and a braking module. From road boundaries, the steering module determines handle turn angle. The braking module stops or decelerates to avoid collision depending on the relative speeds and distance to the obstacles detected by different sensors. This ARV system has been implemented in a small jeep and can run 30-40 km/h city traffic. In this paper, we illustrate the structure of the ARV systems and its operation principle.

  • PDF

Tracking Initiation Performance Analysis of the Adaptive Beamforming (추적 개시 확률 산출을 통한 적응빔형성 성능 분석)

  • Ha, Chang-Eup;Kim, Yong-Sin;Lee, Sang-Hyeok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.89-96
    • /
    • 2016
  • The performance of anti-submarine sonar detection is required to improve by the development of submarine noise reduction technology. because of the need of an anti-submarine detection ability, known for superior beamforming performance, adaptive beamforming algorithms have been considered as an alternative beamforming algorithm of a conventional beamforming algorithm. In order to achieve improved performance by applying an adaptive beamforming algorithm to the sonar system, the adaptive beamforming algorithm applicability of system must be verified, To do this, the performance index for the system applicability must be established. In this paper, a tracking initiation probability of the adaptive beamforming algorithm and the conventional beamforming algorithm was calculated and the performance of both techniques was quantified, a system applicability of the adaptive beamforming algorithm was reviewed.

Study on Unmanned Hybrid Unmanned Surface Vehicle and Unmanned Underwater Vehicle System

  • Jin, Han-Sol;Cho, Hyunjoon;Lee, Ji-Hyeong;Jiafeng, Huang;Kim, Myung-Jun;Oh, Ji-Youn;Choi, Hyeung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.475-480
    • /
    • 2020
  • Underwater operating platforms face difficulties regarding power supply and communications. To overcome these difficulties, this study proposes a hybrid surface and underwater vehicle (HSUV) and presents the development of the platform, control algorithms, and results of field tests. The HSUV is capable of supplying reliable power to the unmanned underwater vehicle (UUV) and obtaining data in real time by using a tether cable between the UUV and the unmanned surface vehicle (USV). The HSUV uses global positioning system (GPS) and ultra-short base line sensors to determine the relative location of the UUV. Way point (WP) and dynamic positioning (DP) algorithms were developed to enable the HSUV to perform unmanned exploration. After reaching the target point using the WP algorithm, the DP algorithm enables USV to maintain position while withstanding environmental disturbances. To ensure the navigation performance at sea, performance tests of GPS, attitude/heading reference system, and side scan sonar were conducted. Based on these results, manual operation, WP, and DP tests were conducted at sea. WP and DP test results and side scan sonar images during the sea trials are presented.

Development of Buoy-based Autonomous Surface Robot-kit (부이기반 자율형 수상로봇키트 개발)

  • Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.249-254
    • /
    • 2015
  • Buoys are widely used in marine areas because they can mark positions and simultaneously acquire and exchange underwater, surface, and airborne information. Recently, the need for controlling and optimizing a buoy's position and attitude has been raised to achieve successful communication in a heterogeneous collaborative network composed of an underwater robot, a surface robot, and an airborne robot. A buoy in the form of a marine robot would be ideal to address this issue, as it can serve as a moving node of the communication network. Therefore, a buoy-based autonomous surface robot-kit with the abilities of sonar-based avoidance, dynamic position control, and static attitude control was developed and is discussed in this paper. The test and evaluation results of this kit show the possibility of real-world applications and the need for additional studies.

Application of Side Scan Sonar to Disposed Material Analysis at the Bottom of Coastal Water and River

  • Lee, Joong-Woo;An, Do-Gyoung
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.259-266
    • /
    • 2003
  • Due to the growth of population and industrial development at the coastal cities, there has been much increase in necessity to effective control of the wastes into the coastal water and river. The amount of disposal at those waters has been increased rapidly ana it is necessary for us to track of it in order to keep the waterway safe and the water clean. The investigation and research in terms of water quality in these regions have been conducted frequently but the systematic survey of the disposed wastes at the bottom was neglected and/or minor. In this study we surveyed the status of disposed waste distribution at the bottom of coastal water and river from the scanned images. The intensity of sound received by the side scan sonar tow fish from the sea floor provides information as to the general distribution and characteristics of the superficial wastes. The port and starboard side scanned images produced from two arrays of transducers borne on a tow fish connected by tow cable to a tug boat have the area with width of 22m~112m and band of 44m~224m. All data are displayed in real-time on a high-resolution color display ($1280{\times}1024$ pixels) together with position information by DGPS. From the field measurement and analysis of the recorded images, we could draw the location and distribution of bottom disposals. Furthermore, we could make a database system which might be useful for navigation and fundamental for planning the waste reception and process control system.

Collaborative Control Method of Underwater, Surface and Aerial Robots Based on Sensor Network (센서네트워크 기반의 수중, 수상 및 공중 로봇의 협력제어 기법)

  • Man, Dong-Woo;Ki, Hyeon-Seung;Kim, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.135-141
    • /
    • 2016
  • Recently, the needs for the development and application of marine robots are increasing as marine accidents occur frequently. However, it is very difficult to acquire the information by utilizing marine robots in the marine environment. Therefore, the needs for the researches of sensor networks which are composed of underwater, surface and aerial robots are increasing in order to acquire the information effectively as the information from heterogeneous robots has less limitation in terms of coverage and connectivity. Although various researches of the sensor network which is based on marine robots have been executed, all of the underwater, surface and aerial robots have not yet been considered in the sensor network. To solve this problem, a collaborative control method based on the acoustic information and image by the sonars of the underwater robot, the acoustic information by the sonar of the surface robot and the optical image by the camera of the static-floating aerial robot is proposed. To verify the performance of the proposed method, the collaborative control of a MUR(Micro Underwater Robot) with an OAS(Obstacle Avoidance Sonar) and a SSS(Side Scan Sonar), a MSR(Micro Surface Robot) with an OAS and a BMAR(Balloon-based Micro Aerial Robot) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling (천해에서 해저면 반사파의 모델링을 통한 물체의 탐지)

  • On, Baeksan;Kim, Sunho;Moon, Woosik;Im, Sungbin;Seo, Iksu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.55-65
    • /
    • 2016
  • Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.

Development of Submarine Acoustic Information Management System

  • Na Young-Nam;Kim Young-Gyu;Kim Seongil;Cho Chang Bong;Kim Hyung-Soo;Lee Yonggon;Lee Sung Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2E
    • /
    • pp.46-53
    • /
    • 2005
  • Agency for Defense Development (ADD) developed the Submarine Acoustic Information Management System (SAIMS Version 1.0) capable of interfacing some submarine sensors in operation and predicting detection environments for sonars. The major design concepts are as follows: 1) A proper acoustic model is examined and optimized to cover wide spectra of frequency ranges for both active and passive sonars. 2) Interfacing the submarine sensors to an electric navigation chart, the system attempts to maximize the applicability of the information produced. 3) The state-of-the-art database in large area is built and managed on the system. 4) An algorithm, which is able to estimate a full sound speed profile from the limited oceanographic data, is developed and employed on the system. This paper briefly describes design concepts and algorithms embedded in the SAIMS. The applicability of the SAIMS was verified through three sea experiments in October 2003-February 2004.