• Title/Summary/Keyword: Sonar Beam Pattern

Search Result 28, Processing Time 0.022 seconds

Acoustic Characteristics Analysis of Cylindrical Array for the Directional and Omni-directional mode Using the Boundary Element Method (경계요소법을 이용한 원통형 배열센서의 지향성/무지향성 모드에 대한 음향특성해석)

  • Lee, Jung-Min;Seo, Hee-Seon;Cho, Yo-Han;Baek, Kwang-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.922-927
    • /
    • 2009
  • The transducers used in active sonar on surface ships are packed in a specific geometry in the array drum in order to meet the requirements such as the source level, directional beam pattern, etc. This paper describes the acoustic characteristics of the cylindrical array which is based on a 64 vertical staves arrangement, each stave composed 5 independent transducers. Firstly, the single transducer on the rigid baffle in the water is analyzed with the Finite Element Method. From the result of the FE analysis nodal velocities on the radiation surface is calculated and used with the boundary conditions of the transducers mounted on the array drum. Then the acoustic pressure is calculated in the field points using the Boundary Element Method and the other acoustic informations, the source level, beam pattern, near field and far-field distance, were acquired.

Simulation of a piezoelectric flextentional sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 압전체 유연형 쏘나 변환기 시뮬레이션)

  • Jarng, Soon-Suck
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.307-312
    • /
    • 1999
  • A piezoelectric flextentional sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state displacement modes, underwater directivity patterns. It is shown that the present barrel-stave sonar transducer of the piezoelectric material produces flextentional displacements which could be related with higher output power, lower quality factor and more omnidirectional beam pattern than other types of sonar transducers.

  • PDF

Analysis of Error Tolerance in Sonar Array by the Genetic Algorithm (유전자 알고리즘에 의한 소나 배열 소자의 허용오차 분석)

  • 양수화;김형동
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.496-504
    • /
    • 2003
  • In this paper, the error tolerance of each array element to ensure a given specified error level for the array pattern is analyzed using the Genetic Algorithm. In the conventional deterministic method for synthesis of sonar way problems the computational resource required in the simulation grows rapidly as the number of way elements increases. To alleviate this numerical inefficiency, the Monte-Carlo method may be considered as an alternative technique for array syntheses. However, it is difficult to apply the method to the synthesis of array patterns because of its relatively lower accuracy in spite of moderate computational complexity. A new analysis method for estimating error tolerances in sonar arrays is Proposed since the Genetic Algorithm has significant promise to efficiently solve way synthesis problems. Through several numerical tests in linear and planar arrays, it is demonstrated that the proposed method can provide accurate results for error tolerances of sonar arrays.

Comparison of piezoelectric flextentional sonar transducer simulations between a coupled FE-BEM and ATILA code (결합형 유한요소-경계요소 기법과 ATILA와의 압전체 유연성 쏘나 변환기 시뮬레이션 비교)

  • Soon-Suck Jarng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.559-567
    • /
    • 1999
  • A piezoelectric flextentional sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state displacement modes, underwater directivity patterns, resonant frequencies, bandwidths, quality factors, output acoustic powers and transmitting voltage responses. It is shown that the present barrel-stave sonar transducer of the piezoelectric material produces flextentional displacements which could be related with higher output power, lower quality factor and more omnidirectional beam pattern than other types of sonar transducers. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

A Study on the Control of the Radiation Pattern of an Ultra-Sonic Beam by the Plural Arrangement of the Transducers (초음파진동자의 복수배열에 의한 지향성가변에 관한 연구)

  • 신형일
    • Journal of the Korean Institute of Navigation
    • /
    • v.3 no.2
    • /
    • pp.21-30
    • /
    • 1979
  • Echo sounder and Doppler sonar are to theultra-sonic transducers for measuring the depth and the ship's speed respectively. To measure the depth and speed with a single transducer, it is required to control the ultra-sonic beam to optional direction. In the past, the direction of the transducer itself is varied, but such a method provoked much problems in the mechanical design of the equipment. This paper deals with the method to control beam direciton by the phase control of the plural arrangement of transducers, and the results are studied by a computer simulation. The remarkable results of the study is condensed as follows; 1. The greater the interval of arrangement between transducers, the sharper the radiation pattern is, but in this case, the level of undesired sidelobe is also increased. 2. The control of radiation pattern up to 60 degree can be achieved by an adequate arrangement of more than 10 transducers. 3. It is shown that a simultaneous measurement of both depth and speed can be achieved by alternating directivity of the pulse by the method proposed in this paper.

  • PDF

A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario (위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발)

  • Shin, Myoungin;Lee, Jinho;Hong, Wooyoung;Kim, Woo Shik;Bae, Hoseuk;Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.21-33
    • /
    • 2020
  • This study develops a simulator for determining the sonar sensor configuration of unmanned underwater vehicles (UUVs) based on a scenario, in order for UUVs to conduct an effective anti-submarine warfare (ASW). First, we analyze the missions and operational concepts of UUVs in the field of ASW, and then select a Hold-at-Risk scenario as the one with the highest priority. Next, for modeling the components of a simulator, the motion, acoustic characteristic, and environment condition of the platforms (UUV and target submarine) are specified. Especially, based on the beam pattern of each sonar configuration considered in this paper, the passive sonar equation is used to verify target detection, and we further estimate the azimuth and elevation of the target using amplitude and phase of the received signal, respectively. The simulation results show the performance tendency depending on the sonar sensor configurations of a UUV, and the simulator provides a high applicability under various scenarios.

A Prediction of Radiation Power for the Planar Array Acoustic Transducer Considering Mutual Coupling Effects (상호 간섭 영향을 고려한 평면 배열형 음향 트랜스듀서의 방사 출력 예측)

  • Lee, Jong-Kil;Seo, In-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.17-22
    • /
    • 1996
  • Planar array of acoustic transducer is normally used in a sonar system. Acoustic radiation makes beam pattern in underwater uses. The main source of the beam pattern is due to the transducer array. Therefore, estimation of the acoustic radiated power is necessary to predict the performance and efficiency of the transducer. As an example of the acoustic radiation power, nine acoustic transducers mounted to a rigid infinite baffle are considered in a theoretical model. Each piston's acoustic radiation consists of self- and mutual-radiation impedances. Total radiation impedances and acoustic radiation power of the transducers are extracted using on the theory of an equivalent electric circuit. The theoretical results reveal that acoustic radiation power of the transducer depends on the mutual coupling effects.

  • PDF

Decision of Error Tolerance in Sonar Array by the Monte-Carlo Method (Monte-Carlo 방법에 의한 소나배열 소자의 허용오차 규정)

  • 김형동;이용범;이준영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2002
  • In thin paper, error tolerance of each array element which satisfies error tolerance of beam pattern is decided by using the Monte-Carlo method. Conventional deterministic method decides the error tolerance of each element from the acceptance pattern by testing all cases, but this method is not suitable for the analysis of large number of array elements because the computation resources increase exponentially as the number of array elements increases. To alleviate this problem, we applied new algorithm which reduces the increment of calculation time increased by the number of the array elements. We have validates the determined error tolerance region through several simulation.

Design of SONAR Array for Detection of Bottoming Cylindrical Objects (착저 원통형 물체 탐지를 위한 소나 어레이 설계)

  • Kim, Sunho;Jung, Jangwon;On, Baeksan;Im, Sungbin;Seo, Iksoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.15-21
    • /
    • 2017
  • In the active SONAR system, various studies have been carried out to enhance the resolution of a received signal. In order to obtain higher resolution for detecting a bottoming cylindrical object, the design of a planar array for SONAR is investigated in this paper. It is necessary to employ planar structures for SONAR array to obtain narrower beam pattern which gives high resolution. In this study, the transmit frequency of each acoustic transducer, which consists of an array is 13 kHz. For efficient detection of a target of an asymmetric size, the concept of areal angle is applied, which considers resolution according to both azimuth and elevation angles in array design. In the design, the areal angle is first investigated to satisfy the resolution requirements, and then based on the value of areal angles, the azimuth angle and the elevation angle are calculated respectively to design an array.

Performance analysis of sensor selection methods for beam steering direction of non-linear conformal array (비선형 곡면 배열 센서의 빔 지향 방위별 센서 선택 방법에 대한 성능 분석)

  • Kwon, Taek-ik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.391-399
    • /
    • 2021
  • The conformal array sensor has different sub-array depending on different beam steering directions. According to the method to effective the sensor, the performance of the conformal array sensor can be different, where the sub-array selects an effective sensor. Also, due to the figure of the conformal array sensor, the figure of the sub-array can be different each other, which results in different performance on directivity index, beam width and etc. In this paper, two methods to select sub-array which is the criteria for each sensors position vector and directive vector were proposed. For two sub-array selection methods, the performance of the directivity index, horizontal and vertical beam width were compared with the average and variance. In addition, this comparison was conducted when the number of sensors was fixed. When the number of sensors was not fixed, the directional vector method mainly results in high performance, but the performance of vertical beam width was lower or equal. When the number of sensors was fixed, the performance of two methods is similar, but the performance of variance was deteriorated.