• Title/Summary/Keyword: Somatic embryos

Search Result 501, Processing Time 0.026 seconds

An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks

  • Lee, Jeoung Eun;Chung, Young Gie;Eum, Jin Hee;Lee, Yumie;Lee, Dong Ryul
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.197-198
    • /
    • 2016
  • Although three different research groups have reported successful derivations of human somatic cell nuclear transfer-derived embryonic stem cell (SCNT-ESC) lines using fetal, neonatal and adult fibroblasts, the extremely poor development of cloned embryos has hindered its potential applications in regenerative medicine. Recently, however, our group discovered that the severe methylation of lysine 9 in Histone H3 in a human somatic cell genome was a major SCNT reprogramming barrier, and the overexpression of KDM4A, a H3K9me3 demethylase, significantly improved the blastocyst formation of SCNT embryos. In particular, by applying this new approach, we were able to produce multiple SCNT-ES cell lines using oocytes obtained from donors whose eggs previously failed to develop to the blastocyst stage. Moreover, the success rate was closer to 25%, which is comparable to that of IVF embryos, so that our new human SCNT method seems to be a practical approach to establishing a pluripotent stem cell bank for the general public as well as for individual patients.

Use of Chitosan-TPP microsphere as a matrix for the encapsulation of somatic embryos of Capsicum annum var. grossum

  • Senarath, Wtpsk;Stevens, W.F.;Lee, Kui-Jae;Rehman, S.;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11b
    • /
    • pp.52-52
    • /
    • 2002
  • Chitosan is a key compound of shrimp waste. It is a biopolymer, which is widely used in the field of medical Sciences. Chitosan-TPP (Tripolyphosphate) complex has more or less similar physical properties as Ca-alginate which can be used for the production of synthetic seeds. Possibility of the use of Chitosan-TPP complex as a matrix for encapsulation of somatic embryos was tested against the Ca-alginate complex (2.5w/v Na-alginate, 100mM CaCl2 at pH 5.5). Somatic embryos grown in the induction medium (IM) were drawn into the viscous chitosan solution (1%) and mixed well by inverting the tube carefully. Then the mixture was dropped at regular intervals into the tripolyphosphate (TPP) solution kept on a magnetic stirrer for bead formation. Synthetic seeds formed were washed and transferred into the incubation medium, then allowed either to air-dry or freeze-dry.(중략)

  • PDF

Reproductive Efficiency and Characteristics of Cloned Miniature Piglets Produced from Domestic Commercial Gilts

  • You, Jin-Young;Jeon, Yu-Byeol;Hyun, Sang-Hwan;Park, Soo-Bong;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.215-219
    • /
    • 2010
  • The objective of this study was to examine the reproductive characteristics of cloned miniature piglets produced from surrogate domestic pigs. Somatic cell nuclear transfer (SCNT) miniature pig embryos were transferred into domestic pigs. As controls, domestic pigs of the same breed with surrogates for SCNT embryos and miniature pigs of the same breed with the somatic cell donor were bred by artificial insemination and natural mating, respectively. Surrogate domestic pigs that farrowed cloned miniature piglets had a significantly longer gestation length (118.1 days) than conventionally bred domestic (115.4 days) and miniature (115.5 days) pigs. Furthermore, the birth weight of cloned miniature piglets produced from domestic pigs (743 g) was significantly greater than that of miniature piglets produced by natural breeding (623 g). Also, cloned miniature piglets had a significantly lower weaning rate (49.7%) than conventionally produced domestic (91.5%) and miniature (100%) piglets. No differences were observed between female and male cloned piglets in gestation length, litter size, birth weight, or weaning rate. Our results demonstrate that gestation length is extended in domestic pigs that are transferred with SCNT miniature pig embryos and that cloned miniature piglets have increased birth weight and high pre-weaning mortality.

유용 약용식물의 대량증식

  • Kim, Jae-Hun;Kim, Myeong-Jo;Byeon, Gyeong-Rok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.75-77
    • /
    • 2000
  • Somatic embryoginic cells of valuable medicinal plants were cultured in MS (Murashige and Skoog) liquid medium by subculture at 2 week intervals. The embryogenic cells could be proliferated with maintenance of identical embryogenesis. The cell clumps developed to somatic embryos of uniform sizes of torpedo stage after $4{\sim}5$ weeks of culture. The culturing for a period about $10{\sim}15$ days led the somatic embryos to the development of seedlings which could be utilized as materials for health foods or providing useful components.

  • PDF

Quantitative analysis of mitochondrial DNA in porcine-mouse cloned embryos

  • Hyeonyeong Shin;Soyeon Kim;Myungyoun Kim;Jaeeun Lee;Dongil Jin
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.767-778
    • /
    • 2023
  • The aim of the research is to identify that porcine oocytes can function as recipients for interspecies cloning and have the ability to develop to blastocysts. Furthermore each mitochondrial DNA (mtDNA) in interspecises cloned embryos was analyzed. For the study, mouse-porcine and porcine-porcine cloned embryos were produced with mouse fetal fibroblasts (MFF) and porcine fetal fibroblasts (PFF), respectively, introduced as donor cells into enucleated porcine oocytes. The developmental rate and cell numbers of blastocysts between intraspecies porcine-porcine and interspecies mouse-porcine cloned embryos were compared and real-time polymerase chain reaction (PCR) was performed for the estimate of mouse and porcine mtDNA copy number in mouse-porcine cloned embryos at different stages.There was no significant difference in the developmental rate or total blastocyst number between mouse-porcine cloned embryos and porcine-porcine cloned embryos (11.1 ± 0.9%, 25 ± 3.5 vs. 10.1 ± 1.2%, 24 ± 6.3). In mouse-porcine reconstructed embryos, the copy numbers of mouse somatic cell-derived mtDNA decreased between the 1-cell and blastocyst stages, whereas the copy number of porcine oocyte-derived mtDNA significantly increased during this period, as assessed by real-time PCR analysis. In our real-time PCR analysis, we improved the standard curve construction-based method to analyze the level of mtDNA between mouse donor cells and porcine oocytes using the copy number of mouse beta-actin DNA as a standard. Our findings suggest that mouse-porcine cloned embryos have the ability to develop to blastocysts in vitro and exhibit mitochondrial heteroplasmy from the 1-cell to blastocyst stages and the mouse-derived mitochondria can be gradually replaced with those of the porcine oocyte in the early developmental stages of mouse-porcine cloned embryos.

Inhibition of Reactive Oxygen Species Generation by Antioxidant Treatments during Bovine Somatic Cell Nuclear Transfer

  • Bae, Hyo-Kyung;Kim, Ji-Ye;Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2012
  • This study was conducted to examine the optimal concentration and treatment time of antioxidants for inhibition of the ROS generation in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine oocytes were activated parthenogenetically, during which oocytes were treated with various antioxidants to determine the optimal concentrations and kind of antioxidants. Determined antioxidants were applied to oocytes during in vitro maturation (IVM) and/or SCNT procedures. Finally, antioxidant-treated SCNT embryos were compared with in vitro fertilized (IVF) embryos. $H_2O_2$ levels were analyzed in embryos at 20 h of activation, fusion or insemination by staining of embryos in $10{\mu}M$ 2'7'-dichlorodihydrofluorescein diacetate (H2DCFDA) dye, followed by fluorescence microscopy. $H_2O_2$ levels of parthenogenetic embryos were significantly lower in $25{\mu}M$ ${\beta}$-mercaptoethanol (${\beta}$-ME), $50{\mu}M$ L-ascorbic acid (Vit. C), and $50{\mu}M$ L-glutathione (GSH) treatment groups than each control group ($24.0{\pm}1.5$ vs $39.0{\pm}1.1$, $29.7{\pm}1.0$ vs $37.0{\pm}1.2$, and $32.9{\pm}0.8$ vs $36.3{\pm}0.8$ pixels/embryo, p<0.05). There were no differences among above concentration of antioxidants in direct comparison ($33.6{\pm}0.9{\sim}35.2{\pm}1.1$ pixels/embryo). Thus, an antioxidant of $50{\mu}M$ Vit. C was selected for SCNT. $H_2O_2$ levels of bovine SCNT embryos were significantly lower in embryos treated with Vit. C during only SCNT procedure ($26.4{\pm}1.1$ pixels/embryo, p<0.05) than the treatment group during IVM ($29.9{\pm}1.1$ pixels/embryo) and non-treated control ($34.3{\pm}1.0$ pixels/embryo). Moreover, $H_2O_2$ level of SCNT embryos treated with Vit. C during SCNT procedure was similar to that of IVF embryos. These results suggest that the antioxidant treatment during SCNT procedures can reduce the ROS generation level of SCNT bovine embryos.

Study on Chemicals for Post-activation in Porcine Somatic Cell Nuclear Transfer

  • Min, Kyuhong;Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Yu, Youngkwang;Roy, Pantu Kumar;Fang, Xun;Salih, MB;Cho, Jongki
    • Journal of Embryo Transfer
    • /
    • v.31 no.2
    • /
    • pp.131-136
    • /
    • 2016
  • Since the first success of animal cloning, somatic cell nuclear transfer presented various ideas in many research areas such as regenerative medicine. However, SCNT embryos has poor survival rate. Therefore, numerous researches carried out to enhance the developmental capability of porcine nuclear transfer embryos. Cytochalasin B, demecolcine, latrunculin A, cycloheximide and 6-dimethylaminopurine are efficient chemicals treated in post-activation procedure to increase the efficiency of SCNT. This review study is aim to investigate the effects of these chemicals applied to post-activation in porcine SCNT. Cytochalasin B, demecolcine, latrunculin A are cytoskeletal manuplators inhibit extrusion of pseudo-polar body. Cytochalasin B and demecolcine showed considerably higher blastocyst formation proportion (26-28%) compared to when they are not treated (16%). And when latrunculin A was treated for postactivation, blastocyst formation proportion was increased in SCNT embryos exposed to LA (38%) than those in control (14%). On the other hand, cycloheximide and 6-dimethylaminopurine are protein synthesis and kinase inhibitors. And they help to maintain $Ca^{2+}$ fluctuation in oocytes. Cleavage and blastocyst rates of NT embryos were increased when they were exposed to CHX (16.9% and 5.4% with no CHX).And 6-DMAP also showed higher blastocyst formation (21.5% compared to 15.7%, control). Although all these chemicals have different mechanisms, they showed developmental competence enhancement in NT embryos. However, there are only few studies comparing each chemical's post-activation effect. Therefore, further research and study should be conducted to find optimal chemical for improving the efficiency of SCNT.

Mass Propagation of Somatic Embryos and Plantlets of Aralia elata through Bioreactor Culture (생물반응기 배양을 통한 두릅나무(Aralia elata)의 체세포배 및 유식물체 대량증식)

  • Lee, Won-Seok;Choi, Eun-Gyung;Kim, Jae-Whune
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.219-223
    • /
    • 2004
  • Embryogenic calli were induced from petioles of Aralia elata on MS solid medium supplemented with 1.0 mg/L 2,4-D. When embryogenic calli were transferred to MS liquid medium supplemented with 1.0 mg/L 2,4-D, embryogenic cells and embryogenic cell clusters were developed after 2 weeks of culture. Embryogenic cells were filtered through a 250 ${\mu}{\textrm}{m}$ sieve and the passed cells were proliferated and maintained in MS liquid medium supplemented with 1.0 mg/L 2,4-D. Embryogenic cell clusters entrapped on the sieve were transferred to 1/2 MS liquid medium without plant growth regulators, globular-shaped embryos were developed from embryogenic cell clusters after 2 weeks of culture. Numerous early stage somatic embryos could be developed to heart-shaped, torpedo-shaped, cotyledonary embryos and plantlets in 5 L bioreactor. Above results suggest that effective somatic embryo proliferation can be achieved via bioreactor culture systems in Aralia elata.

Effect of Activation Method and Culture Medium on the Development of Porcine Nuclear Transfer Embryo using Fetal Fibroblast

  • Im, Gi-Sun;Yang, Byoung-Chul;Park, Jin-Ki;Kim, Hyun-Ju;Chang, Won-Kyung;R. S. Prather;B. N. Day
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.66-66
    • /
    • 2001
  • Since the first birth of pig derived from embryonic cells by nuclear transfer, many researches to produce cloned pig have been carried out. Recently, two reports about the birth of somatic cell cloned pigs using in vivo oocytes and also Betthauser et al. (2000) reported the birth of somatic cell cloned pigs using in vitro oocytes. So here we investigated the effect of activation method and culture medium on in vitro development of porcine nuclear transfer embryo using fetal fibroblast. Oocytes derived from slaughter house obtained ovaries were matured for 42 to 44 h in TCM 199. Matured oocytes were denuded using 0.1% hyaluronidase and then Oocytes with the first polar body were used for enucleation by aspirating the first polar body and adjacent cytoplasm in TCM 199 supplemented with 7.5 $\mu\textrm{g}$ cytochalasin B. Petal fibroblast cells were prepared from 35 days old fetus. To be used as donor cells, fetal fibroblast cells were serum starved for 3 to 5 days and then isolated into single co:1 by trypsinization. Nuclear transfer embryos were fused using 2 times 1.25㎸ for 30$mutextrm{s}$. Fused NT embryos were activated with calcium ionophore (CI) and 6-dimethyl-aminopurine (6-DMAP). Activated oocytes were cultured in NCSU 23 or BECM 3 for 6 days. There was no significant difference between chemical activation and no chemical activation for blastocyst development rate(11.6 vs. 14.8%). However, cell number was significantly higher when NT embryos were activated with CI and 6-DMAP (31.2 vs. 22.6). When NT embryos were cultured in NCSU 23 or BECM 3, blastocyst development rate was 16.4 and 13.2%, respectively, and cell number was 31.5 and 24.1, respectively. These results suggest that chemical activation after fusion and culture in NCSU 23 could increase cell number of porcine NT embryos.

  • PDF

Effect of Antioxidants and Co-culture System on the Development of Bovine Embryos Derived from In Vitro Fertilization II. Effect of Antioxidants and Amino Acids with Somatic Cells on the Development of Bovine IVM/IVF Embryos (항산화제 첨가와 체세포 공동배양이 소 체외수정란의 체외발육에 미치는 영향 II. 체세포 공동배양과 항산화제 첨가가 소 체외수정란의 체외발육에 미치는 효과)

  • 양부근;황환섭;박동헌;정희태;박춘근;김종복;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.2
    • /
    • pp.171-177
    • /
    • 1996
  • This study was designed to evaluate the efficacy of antioxidants and amino acid with buffalo rat liver cell(BRLC), bovine oviductal epithelial cell(BOEC) and STOC monolayers in supporting the development of in vitro matured(IVM) and in vitro fertilized(IVF) bovine oocytes. Bovine embryos developed to the 2~8 cell stage after in vitro fertilization were cultured for 5 to 6 days at 39$^{\circ}C$ in CR1aa containing antioxidants and amino acids with various somatic cells. Embryo development was examined and cell numbers of blastocysts were counted by fluorescence staining method. In experiment 1, the proportion of embryos that reached the blastocyst stage in control, catalase(250U), SOD(600U), glutathione(100$\mu$M) and taurine(2.5mM) with BRLC were 11.4, 8, 0, 16.7 and 43.4 respectively. Taurine(2.5mM) with BRLC group was significantly the highest among treatments(P<0.05). In experiment 2, in vitro development rate into blastocyst in control, catalase(250U), SOD(600U), glutathione(100$\mu$M) and taurine(2.5mM) with BOEC were 15.8, 23.5, 22.8, 28.6 and 56.9 respectively. In experiment 3, embryonic development in all treatments as control, catalase(250U), SOD(600U), glutathione(100$\mu$M) and taurine(2.5mM) added to CR1aa with STO cells were 23.5, 24.5, 17.0, 28.8 and 50.0 blastocysts. These results show that antioxidants and amino acids with somatic cells can provide a significant benefit for coculture of early bovine embryos derived from IVM and IVF.

  • PDF