• Title/Summary/Keyword: Solvent vapor annealing

Search Result 8, Processing Time 0.266 seconds

Growth of Rubrene Crystalline Wire via Solvent-vapor Annealing

  • Park, Ji-Hoon;Choi, Jeong-M.;Lee, Kwang-H.;Mun, Sung-Jin;Ko, G.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.871-873
    • /
    • 2009
  • We report on the growth of rubrene ($C_{42}H_{28}$) wire fabricated by thermal evaporation, followed by solvent-vapor annealing for the application of organic thin film transistor. Solvent-vapor annealing was carried out in precisely controlled vapor pressure at elevated temperature. Micro-sized, and elongated rubrene wire was obtained via solvent annealing process reproducibly. Optical image and XRD data shows highly crystalline quality of rubrene wire.

  • PDF

Solvent Vapor Annealing Effects in Contact Resistances of Zone-cast Benzothienobenzothiophene (C8-BTBT) Transistors

  • Kim, Chaewon;Jo, Anjae;Kim, Heeju;Kim, Miso;Lee, Jaegab;Lee, Mi Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.411-416
    • /
    • 2016
  • Benzothienobenzothiophene ($C_8-BTBT$) is a soluble organic small molecule material with high crystallinity resulting from its strong self-organizing properties. In addition, the high mobility and easy fabrication of $C_8-BTBT$ make it very attractive in terms of organic thin-film transistors. In this work, we made $C_8-BTBT$ thin films by using the zone-casting method; we also used an organic solvent to treat the devices with solvent vapor annealing to improve the electrical properties. As a result, we confirmed improved mobility, threshold voltage, and subthreshold swing after solvent vapor annealing. To prove the effect of solvent vapor annealing, we used the simultaneous extraction model to extract the contact resistance from the current-voltage curve. We confirmed that the electrical properties improved with decreasing contact resistance.

Room-temperature crystallized organic solar cells without post-treatment

  • Yu, Dae-Seong;Gang, Yong-Jin;Im, Gyeong-A;Jeong, Seong-Hun;Kim, Jong-Guk;Kim, Do-Geun;Gang, Jae-Uk;Kim, Chang-Su;Kim, Ju-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.108-109
    • /
    • 2011
  • 유기태양전지를 제작 시에 요구되는 것 중 하나는 active layer의 thermal annealing이다. Thermal thermal annealing 없이는 P3HT의 self-organization이 잘 이뤄지지 않아 비정질의 모습을 보인다. 또한 low band-gap이나 열에 취약한 물질을 사용 시에 태양전지 효율이 낮아지게 된다. 이 점을 착안하여 Active layer에 사용되는 유기용매의 solvent vapor pressure 차이를 이용하여 co-solvent가 되도록 mixing하여, co-solvent로 poly(3-hexylthiopene)(P3HT):[6,6] - phenyl $C_{61}$-butyric acid methyl ester (PCBM)를 blending 하여 active layer로 사용하였으며, 유기태양전지 디바이스 제작 결과 thermal thermal annealing 없이 2.8%까지 도달하였다. X-Ray Diffraction(XRD)과 Atomic Force Microscopy(AFM)를 통하여 P3HT의 결정화가 이루어 졌음을 확인하고 이를 통해 active layer의 thermal annealing이 없이도 P3HT의 self-organization이 이뤄짐을 알 수 있었다.

  • PDF

Efficiency Improvement of Organic Solar Cells Using Two-step Annealing Technique

  • Masood, Bilal;Haider, Arsalan;Nawaz, Tehsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.134-138
    • /
    • 2016
  • The fullerene solar cells are becoming a feasible choice due to the advanced developments in donor materials and improved fabrication techniques of devices. Recently, sufficient optimization and improvements in the processing techniques like incorporation of solvent vapor annealing (SVA) with additives in solvents has become a major cause of prominent improvements in the performance of organic solar cell-based devices . On the other hand, the challenge of reduced open circuit voltage (Voc) remains. This study presents an approach for significant performance improvement of overall device based on organic small molecular solar cells (SMSCs) by following a two step technique that comprises thermal annealing (TA) and SVA (abbreviated as SVA+TA). In case of exclusive use of SVA, reduction in Voc can be eliminated in an effective way. The characteristics of charge carriers can be determined by the measurement of transient photo-voltage (TPV) and transient photo-current (TPC) that determines the scope for improvement in the performance of device by two step annealing. The recovery of reduced Voc is linked with the necessary change in the dynamics of charge that lead to increased overall performance of device. Moreover, SVA and TA complement each other; therefore, two step annealing technique is an appropriate way to simultaneously improve the parameters such as Voc, fill factor (FF), short circuit current density (Jsc) and PCE of small molecular solar cells.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

Ordered Polymer Nanostructures Induced by Controlled Dewetting

  • Park, Cheol-Min;Yoon, Bo-Kyung;Kim, Tae-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.188-188
    • /
    • 2006
  • We demonstrate two very simple and fast routes to fabricating ordered micro/nanopatterns of polymers over large areas on various substrates using controlled dewetting. The first method is based on utilizing microimprinting to induce the local thickness variation of an initially inverted bilayer which allows the controlled dewetting and partial layer inversion upon subsequent thermal annealing. In the second method, the self assembly of block copolymer was controlled on a chemically micropatterned surface produced by microcontact printing, being combined with its solvent vapor treatment. The kinetically driven, non-lithographical nanopattern structures were easily fabricated over large area by these approaches.

  • PDF

A performance study of organic solar cells by electrode and interfacial modification (전극과 계면간의 개질에 의한 유기태양전지의 성능 연구)

  • Kang, Nam-Su;Eo, Yong-Seok;Ju, Byeong-Kwon;Yu, Jae-Woong;Chin, Byung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF

Mechanical Properties of PVB 3D Printed Output Fumigated with Ethanol (에탄올 훈증처리한 3D 프린팅 PVB 출력물의 기계적 특성)

  • Kang, Eun-Young;Lim, Ji-Ho;Choi, Seunggon;Mun, Jong Wook;Lee, Yu Kyung;Lee, Sun Kon;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.369-375
    • /
    • 2020
  • FDM 3D printing structures have rough surfaces and require post-treatment to improve the properties. Fumigation is a representative technique for removing surface unevenness. Surface treatment by fumigation proceeds by dissolving the surface of the protruding structure using a vaporized solvent. In this study, 3D printed PVB outputs are surface-treated with ethyl-alcohol fumigation. As the fumigation time increases, the surface flattens as ethanol dissolves the mountains on the surface of PVB and the surface valleys are filled with dissolved PVB. Through the fumigation process, the mechanical strength tends to decrease, and deformation rate increases. Ethanol vapor permeates into PVB, widening the distance between chains and resulting in weak bonding strength between chains. In order to confirm the effect of fumigation only, an annealing process is performed at 80 ℃ for 1, 5, 10, 30, and 50 minutes and the results of the fumigation are compared.