• 제목/요약/키워드: Solvent evaporation

검색결과 272건 처리시간 0.024초

Preparation of Substained-Release Microspheres of Phenylpropanolamine HCI and Their Release Characteristics

  • Kim, Chong-Kook;Lee, Kyung-Mi;Hwang, Sung-Joo;Yoon, Yong-Sang
    • Archives of Pharmacal Research
    • /
    • 제13권4호
    • /
    • pp.293-297
    • /
    • 1990
  • Sustained release microspheres containing phenylpropanolamine HCI (PPA) were prepared with acrylic polymer (Eudragit RL/RS) sand hydroxypropylmethylcellulose phthalate (HPMCP) using a emulsion-solvent evaporation method. Magnesium strate was used a smoothing agent for preparation of microspheres. The microspheres obtained were very spherical and free-flowing particles. Scanning electron microscopy showed that microspheres have a smooth surface and a sponage-like internal structure. The dissolution rate of PPA from the microspheres was dependent on the pH of dissolution media. PPA showed faster relase in hP 1. 2 solution than in pH 7.4 solution due to the solubility of PPA. Therefore we prepared new microspheres containing 5% (w/v) HPMCP in order to control the release of PPA. The release rate of PPA from these new microspheres was similar in pH 1.2 and pH 7.4 solution.

  • PDF

Preparation of Mucoadhesive Chitosan-Poly(Acrylic acid) Microspheres by Interpolymer Complexation and Solvent Evaporation Method II

  • Cho, Sang-Min;Choi, Hoo-Kyun
    • Archives of Pharmacal Research
    • /
    • 제28권5호
    • /
    • pp.612-618
    • /
    • 2005
  • A mucoadhesive microsphere was prepared by an interpolymer complexation and solvent evaporation method, using chitosan and poly(acrylic acid) (PAA), to prolong the gastric resid ence time of the delivery system. The Fourier transform infrared results showed that microspheres were formed by an electrostatic interaction between the carboxyl groups of the PAA and the amine groups of the chitosan. X-ray diffraction and differential scanning calorimetry analysis showed that the enrofloxacin in the chitosan-PAA microsphere was molecularly dispersed in an amorphous state. Scanning electron microscopy of the surface and the quantity of mucin attached to the microspheres indicated that chitosan-PAA microspheres had a higher affinity for mucin than those of chitosan alone. The swelling and dissolution of the chitosan-PAA microspheres were found to be dependent on the pH of the medium. The rate of enrofloxacin released from the chitosan-PAA microspheres was slower at higher pH; therefore, based on their mucoadhesive properties and morphology, the chitosan-PAA microspheres can be used as a mucoadhesive oral drug delivery system.

A Numerical Study on the Combined Flow and Evaporation During Spin Coating Process (증발을 고려한 회전코팅 공정에 대한 수치해석적 연구)

  • Im, Ik-Tae;Kim, Kwang-Sun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.59-64
    • /
    • 2001
  • The fluid flow, mass transfer and film thickness variation during a wafer spin coating process are numerically studied. Governing equations for the cylindrical coordinates are simplified using the similarity transformation and solved efficiently using the finite difference method. Concentration dependent viscosity and the binary diffusivity of the coating liquid are used in the analysis. The time variational velocity components of the coating liquid and the film thickness are analyzed according to the various spin speed. When the evaporation is considered, the flow decease in the early times due to the increase of the viscosity and the resultant flow resistance. Effects of the two film thinning mechanism, the flow-out and evaporation are also considered in the analysis.

  • PDF

Growth of Rubrene Crystalline Wire via Solvent-vapor Annealing

  • Park, Ji-Hoon;Choi, Jeong-M.;Lee, Kwang-H.;Mun, Sung-Jin;Ko, G.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.871-873
    • /
    • 2009
  • We report on the growth of rubrene ($C_{42}H_{28}$) wire fabricated by thermal evaporation, followed by solvent-vapor annealing for the application of organic thin film transistor. Solvent-vapor annealing was carried out in precisely controlled vapor pressure at elevated temperature. Micro-sized, and elongated rubrene wire was obtained via solvent annealing process reproducibly. Optical image and XRD data shows highly crystalline quality of rubrene wire.

  • PDF

Preparation of Poly-L-Lactic Acid (PLLA) Microspheres by Solvent-Evaporation Method (용매증발법을 이용한 Poly-L-Lactic Acid (PLLA) 마이크로스피어 제조)

  • Kim, Tae Hyoung;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.461-468
    • /
    • 2018
  • Microspheres were prepared by solvent-evaporation method with Poly-L-lactic acid (PLLA) as a starting material, and the effects of preparation variables on microsphere shape and average particle size were investigated. As the concentration of PVA solution increased from 1 to 5 wt%, the average particle size decreased from $370{\mu}m$ to $160{\mu}m$ and then increased to $240{\mu}m$ at 7 wt%. On the other hand, As the addition volume of PVA solution increased from 10 mL to 50 mL, the average particle size decreased from $370{\mu}m$ to $220{\mu}m$. Also, as the stirring speed increased from 500 rpm to 1,500 rpm, the average particle size decreased from $370{\mu}m$ to $110{\mu}m$. When dichloromethane and chloroform were used as organic solvents, respectively, the average particle size did not show any significant difference. However, when dichloromethane was used, voids were observed on the particle surface, but when chloroform was used, smooth spherical particles were obtained.

Preparation of 5-Fluorouracil-Loaded Poly(L-lactide-co-glycolide) Wafer and Evaluation of In Vitro Release Behavior

  • Lee, Jin-Soo;Chae, Gang-Soo;An, Tae-Kun;Gilson Khang;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제11권3호
    • /
    • pp.183-188
    • /
    • 2003
  • The controlled delivery of anticancer agents using biodegradable polymeric implant has been developed to solve the problem of penetration of blood brain barrier and severe systemic toxicity. This study was performed to prepare 5-FU-loaded poly (L-lactide-co-glycolide) (PLGA) wafer fabricated microparticles prepared by two different method and to evaluate their release profile for the application of the treatment of brain tumor. 5-FU-loaded PLGA microparticles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and differential scanning calorimetry (DSC). SEM observation of the 5-FU-loaded PLGA microparticles prepared by rotary solvent evaporation method showed that 5-FU was almost surrounded by PLGA and significant reduction of crystallinity of 5-FU was confirmed by XRD. In case of release profile of 5-FU from 5-FU-loaded PLGA wafer fabricated microparticles prepared by mechanical mixing, the release profile of 5-FU followed near first order release kinetics. In contrast to the above result, release profile of 5-FU from 5-FU-loaded PLGA wafer fabricated microparticles prepared by rotary solvent evaporation method followed near zero order release kinetics. These results indicate that preparation method of the 5-FU-loaded PLGA microparticles to fabricate into wafers was contributed to drug release profile.

Effect of Microwave Irradiation on Conformation of Crystalline of PVDF Nano-composite Film in the Solvent Evaporation Process (용매 증발 과정 중 마이크로웨이브 처리가 PVDF 복합재료 필름의 결정화 형태에 미치는 영향)

  • Hong, Hyunsoo;Kim, Seong-Su
    • Composites Research
    • /
    • 제33권1호
    • /
    • pp.19-24
    • /
    • 2020
  • In this paper, the microwave irradiation process was conducted during the Poly(vinylidene fluoride) (PVDF) nano-composite film fabrication process to analyze how the β-crystalline is increased. TiO2 was added as a nanoparticle reinforcement to further improve the β-crystalline conformation of the PVDF films by van der Waals force due to the difference of electronegativity between PVDF and the metal oxide nanoparticle. The crystalline conformation of the fabricated films was analyzed by X-ray diffraction and Fourier transform infrared spectroscopy. According to these analysis results, it was confirmed that the microwave irradiation process during the solvent evaporation process increases the crystallinity of the PVDF films, and more β-crystalline can be obtained after additional film stretching process. It was also found that the PVDF nano-composite films with the metal oxide have relatively higher β-crystalline conformation rather than the neat PVDF films.

Improvement of Solubility and Dissolution of Ketoconazole by Inclusion with Cyclodextrin (시클로덱스트린과의 포접에 의한 케토코나졸의 용해성 및 용출 증가)

  • Park, Gee-Bae;Ann, Hong-Jik;Chang, Young-Soo;Seo, Bo-Youn;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • 제24권2호
    • /
    • pp.85-94
    • /
    • 1994
  • Inclusion complexes of ketoconazole (KT) with ${\alpha}-$, ${\beta}-cyclodextrin$ (CD) and dimethyl-${\beta}-cyclodextrin$ $(DM{\beta}CD)$ in a molar ratio of 1:2 were prepared by freeze-drying and solvent evaporation methods. The interactions of KT with ${\alpha}-CD$, ${\beta}-CD$ and $DM{\beta}CD$ in aqueous solution and in solid state were investigated by solubility study, infrared (lR) spectroscopy and differential scanning calorimetry (DSC). The stability constant of $KT-DM{\beta}CD$ inclusion complex (lC) was found to be the largest among three inclusion complexes. Clear differences in IR spectra and DSC curves were observed between inclusion complexes and physical mixtures (PM) of KT-CDs. It was also shown by IR spectra and DSC curves that solvent evaporation method might be. superior to the freeze-drying method in preparing the inclusion complexes of KT-CDs. The dissolution rate of KT was markedly increased by inclusion complex formation with CDs in the buffer solution at pH 4.0 and pH 6.8. The mean dissolution time (MDT,min), which represents the rapidity of dissolution, was in the order of $KT-DM{\beta}CD$ IC (3.20) < $KT-{\beta}-CD$ IC (4.36) < $KT-{\alpha}-CD$ IC (6.99) < $KT-{\alpha}-CD$ PM (17.46)< $KT-{\beta}-CD$ PM (19.36) < $KT-{\beta}-CD$ PM (28.53). The dissolution rates of KT-CD ICsprepared by solvent evaporation method were faster than those of KT-CD ICs prepared by freeze-drying method.

  • PDF

Development of Multiparticulate-system Composed of Sustained Release-microspheres of Pseudoephedrin${\cdot}$HCI and Immediate Release-pellets of Terfenadine Using Solvent Evaporation Method and Spherically Agglomerated Crystallization Process (수용성 염산슈도에페드린과 난용성 테르페나딘의 구형정석조립법과 액중미립구법을 이용한 서방성펠렛 복합제제의 개발)

  • Rhee, Gye-Ju;Do, Ki-Chan;Kim, Eun-Hee;Park, Jong-Bum;Whang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • 제41권3호
    • /
    • pp.305-311
    • /
    • 1997
  • Sustained release-microspheres and immediate release-pellets were prepared to develop a controlled release multiparticulate system containing both water soluble and insoluble dr ug. Pseudoephedrin.HCl (EPD) and terfenadine (TRF) were used as model drugs, respectively. Sustained release-EPD microspheres were prepared by solvent evaporation method using Eudragit RL or RS as a matrix combined with pH-insensitive film coating. Smaller EPD microspheres were obtained when smaller amount of Eudragit as a matrix material or larger amount of magnesium stearate as a dispersing agent was used. However the obtained microspheres did not show syfficient sustained release characteristics. About 97% of EPD was released after 1 hr irrespective of matrix material used. Subsequent coating of the microspheres with pH-insensitive polymer such as Eudragit RS or ethylcelulose (EC) resulted good sustained in 37.5, 73.3 and 92.0% release of encapsulated EPD in distilled water after 1, 3 abd 7 hr, respectively. It corresponds to mean dissolution time (MDT) of 2.3 hr, which is much larger than that of un-coated EPD microspheres (0.0048 hr). Immediate release TRF pellets were prepared by spherically agglomerated crystallization using Eudragit E as an inert matrix and methylene chloride as a liquid binder. Using Eudragit E alone as a matrix resulted in satisfactory physical properties of the pellets such as sphericity, surface texture and flowability, but led to slower release of TRF from pellets than un-modified TRF powder (MDT of 1.70 vs 1.43 hr in pH 1.2 dissolution medium). Introducing propylene glycol or sodium lauryl sulfate as an emulsifier brought about faster release of TRF from pellets (MDT of 1.14 and 0.95 hr, respectively). In conclusion, microencapsulation by solvent evaporation combined with film coating and spherically agglomerated crystallization were successfully utilized to prepare controlled release multiparticulate system composed of sustained release EPD-microspheres and immediate release TRF pellets.

  • PDF