• Title/Summary/Keyword: Solvent effects.

Search Result 1,325, Processing Time 0.024 seconds

Effects of generalized-Born implicit solvent models in NMR structure refinement

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Rapid advances of computational power and method have made it practical to apply the time-consuming calculations with all-atom force fields and sophisticated potential energies into refining NMR structure. Added to the all-atom force field, generalized-Born implicit solvent model (GBIS) contributes substantially to improving the qualities of the resulting NMR structures. GBIS approximates the effects that explicit solvents bring about even with fairly reduced computational times. Although GBIS is employed in the final stage of NMR structure calculation with experimental restraints, the effects by GBIS on structures have been reported notable. However, the detailed effect is little studied in a quantitative way. In this study, we report GBIS refinements of ubiquitin and GB1 structures by six GBIS models of AMBER package with experimental distance and backbone torsion angle restraints. Of GBIS models tested, the calculations with igb=7 option generated the closest structures to those determined by X-ray both in ubiquitin and GB1 from the viewpoints of root-mean-square deviations. Those with igb=5 yielded the second best results. Our data suggest that the degrees of improvements vary under different GBIS models and the proper selection of GBIS model can lead to better results.

Prediction of Solvent Effects on Rate Constant of [2+2] Cycloaddition Reaction of Diethyl Azodicarboxylate with Ethyl Vinyl Ether Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz;Nooshyar, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.139-145
    • /
    • 2005
  • Artificial neural networks (ANNs), for a first time, were successfully developed for the modeling and prediction of solvent effects on rate constant of [2+2] cycloaddition reaction of diethyl azodicarboxylate with ethyl vinyl ether in various solvents with diverse chemical structures using quantitative structure-activity relationship. The most positive charge of hydrogen atom (q$^+$), dipole moment ($\mu$), the Hildebrand solubility parameter (${\delta}_H^2$) and total charges in molecule (q$_t$) are inputs and output of ANN is log k$_2$ . For evaluation of the predictive power of the generated ANN, the optimized network with 68 various solvents as training set was used to predict log k$_2$ of the reaction in 16 solvents in the prediction set. The results obtained using ANN was compared with the experimental values as well as with those obtained using multi-parameter linear regression (MLR) model and showed superiority of the ANN model over the regression model. Mean square error (MSE) of 0.0806 for the prediction set by MLR model should be compared with the value of 0.0275 for ANN model. These improvements are due to the fact that the reaction rate constant shows non-linear correlations with the descriptors.

Solvent and Concentration Effects on Carbonyl Stretching Frequencies: Dialkyl Ketones (카르보닐 신축진동 파수에 대한 용매 및 농도 효과: 디알킬 케톤)

  • Jung, Young-Mee;Kang, Jae-Soo;Nam, Sang-Il;Lee, Mu-Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.415-419
    • /
    • 1996
  • Hydrogen bonding, dielectric effects and steric effects are all factors which determine the carbonyl stretching frequency, νC=O of ketones in solution. The νC=O frequency of ketones is affected by change in concentration of ketones in various solvents. The νC=O frequency shifts to lower frequency in nonpolar solvents and shifts to higher frequency in polar solvents with the increasing volume% of ketones. In acetonitrle, the νC=O frequency shifts to higher frequency as the volume% of ketones is increased except dimethyl ketone. The νC=O frequency shifts to lower frequency as the solvent system becomes increasingly polar or with the increasing extent of intermolecular hydrogen bonding, as in the case of increasing volume% chloroform in $CHCl_3$/$CCl_4$ solvent system.

  • PDF

Solvent Effects on the Isotropic NMR Shifts in Quinuclidine and Pyridine-Type Ligands Coordinated to the Paramagnetic Polyomometalate, $[SiW_{11}Co^{II}o_{39}]^{6-}$

  • Hyun, Jaewon;Park, Suk-Min;So, Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1090-1093
    • /
    • 1997
  • The solvent effects on the isotropic NMR shifts in conformationally rigid ligands such as quinuclidine, pyridine, and 4-aminopyridine coordinated to the paramagnetic polyoxometalate, [SiW11CoⅡO39]6- (SiW11Co), are reported. For these complexes the ligand exchange is slow on the NMR time scale and pure 1H NMR signals have been observed at room temperature. The signals for the SiW11Co complexes are shifted upfield whe dimethyl sulfoxide-d6 (DMSO) is added to a D2O solution. The isotropic shifts are separated into contact and pseudocontact contributions by assuming that the contact shifts are proportional to the isotropic shifts of the same ligands coordinated to [SiW11NiⅡO39]6-. It is shown that both the contact and pseudocontact shifts decrease (the absolute values of the pseudocontact shifts increase), when D2O is replaced by DMSO. It is suggested that D2O, a strong hydrogen bond donor, withdraws electron density from [SiW11CoⅡO39]6-, increasing the acidity of the cobalt ion toward the axial ligand. When D2O is replaced by DMSO, the acidity of the cobalt ion in SiW11Co decreases, weakening the Co-N bond. Then both the contact and pseudocontact shifts are expected to decrease in agreement with the observed solvent effects.

Effects of pH and Potassium Chloride in Solvent System of High-Speed Countercurrent Chromatography (pH 및 염화칼륨 첨가가 고속역류크로마토그래피의 용매시스템에 미치는 영향)

  • Lee, Chang-Ho;Lee, Boo-Yong;Lee, Hyun-Yu;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1222-1227
    • /
    • 1997
  • Effects of the physical properties of solvent system such as pH and polarity change by salt addition in solvent system were investigated by using high speed countercurrent chromatography apparatus (Model CCC-1000, Pharm-Tech Research Corp. USA). The changes of pH and interfacial tension in solvent system of high speed countercurrent chromatography did not significantly affect on retention of stationary phase, but induced remarkable changes in the partition coefficient of ginkgo flavonoids, kaempferol, quercetin and isorhamnetin. The partition coefficients of ginkgo flavonoid standard increase with an increased pH of solvent system and quercetin sharply increased at pH 10.0. Retention of stationary phase decreases with an increased concentration of KCl in butanol of solvent system. Interfacial tension between two phase in solvent system of hexane increases with an increased concentration of KCl. The polarity of solvent system significantly changes the partition coefficients of ginkgo flavonoid.

  • PDF

Effects of Co-solvent on Passivation Film of Lithium Surface (리튬 표면의 부동태 피막에 미치는 공용매의 영향)

  • Kang, Jihoon;Jeong, Soonki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.305-310
    • /
    • 2014
  • This study examined the morphological changes in lithium surface immersed in 1mol $dm^{-3}$ (M) $LiPF_6 $ dissolved in propylene carbonate (PC) containing different 1,2-dimethoxyethane (DME) concentrations as a co-solvent. A passivation film was formed on the surface of lithium metal by electrolyte decomposition. The passivation film formation reactions were significantly affected by the amount of co-solvent, DME, in electrolyte solution. A stable film was obtained from the 1 M $LiPF_6 $ / PC:DME (67:33) solution in which lithium electrode showed good electrochemical performances. Atomic force microscope (AFM) and electrochemical impedance spectroscopy (EIS) results revealed that there were no direct correlations between changes in the surface morphology of lithium metal and the resistance behavior of its passivation film.

Intramolecular Esterification by Lipase Powder in Microaqueous Cycohexane (미소 수용 Cyclohexange 중에서 분말 Lipase에 의한 분자내 에스테르화반응)

  • 이민규;감삼규
    • Journal of Life Science
    • /
    • v.5 no.4
    • /
    • pp.155-161
    • /
    • 1995
  • The effects of substrate concentration, enzyme concentration, reaction temperature, and water content were investigated in intramolecular esterification. This study used cyclohexane as organic solvent, power lipase as enzyme, and benzyl alcohol and octanoic acid as substrate. The initial reaction rate was found to be proportional to enzyme concentration; followed Michaelis-Menten equation for octanoic acid; and was inhibited by benzyl alcohol . The observed initial reaction rate first increased, then decreased with increasing reaction temperature, giving rise to the maximum rate at 20$\circ$. The drop in the reaction rate at higher temperature was to partition equilibrium change of substrate between organic solvent and hydration layer of enzyme molecule in addition to the deactivation by enzyme denaturation. Water layer surrounding enzyme molecule seemed to activate in organic solvent and the realistic reaction was done in the water layer. In the enzymatic reaction in organic solvent, the initial reaction rate was influenced by partition quilibrium of substrate, so the optimum condition of substrate concentration, enzyme concentration, reaction temperature, and water content would give a good design tool.

  • PDF

Ionic Liquid as a solvent and Long-Term Separation Performance in Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Kim, Jong-Hak;Char, Kook-Heon;Kang, Yong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.307-307
    • /
    • 2006
  • The reduction behavior of silver ions to silver nanoparticles is an important research topic in polymer/silver salt complex membranes for facilitated olefin transport, because it has a significant effect on the long-term stability of membrane performance. In this study, the effects of solvent on the formation of silver nanoparticles and long-term membrane performance in polymer/silver salt complex membrane were investigated. This effect was assessed for the complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_{4}$ with the use of ionic liquid (IL), acetonitrile (ACN) and water as a solvent. Membrane performance test shows that long-term stability is strongly dependent on the kind of solvent and arranged: IL > ACN >> water.

  • PDF

VOCs Concentrations of Indoor and Outdoor in Solvent Thinner-Using Occupation, and Application of TiO$_2$ Photocatalytic Air Cleaner

  • Wonho Yang;Joon Cho;Busoon Son;Park, Jongan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.1.1-2
    • /
    • 2002
  • Ultimate objective of industrial hygiene is the prevention of health impairment that may result from exposure to chemicals at workplaces. This implies the definition of permissible levels of exposure, that is, levels that according to the present status of knowledge are estimated to cause no adverse health effects during the lifetime of the workers, and the regular assessment of the possible health risk associated with exposure by comparing the current or the integrated exposure with the permissible exposure limits. Workers in solvent thinner-using occupation environment might be highly exposed to VOCs(volatile organic compounds) because solvent thinner has been used extensively such as painting, spraying, degreasing, coating and so on in Korea. The purpose of this study was to recognize, evaluate and propose the alternative control the VOCs from solvent thinner-using workplace.

  • PDF

Determination of Polonium Nuclides in a Water Sample with Solvent Extraction Method

  • Lee, M.H.;Lee, C.H.;Song, K.;Kim, C.K.;Martin, P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2488-2492
    • /
    • 2010
  • A method is described for the determination of the Po nuclides in a water sample. After the Po nuclides were purified from interfering elements in a water sample using a manganese dioxide precipitation followed by a solvent extraction method, the Po nuclides were deposited onto the silver plate. A large volume of the water sample was effectively pretreated with manganese dioxide precipitation method. To determine the optimum conditions for plating Po, the effects of the pH, volume, temperature and time on the Po deposition were investigated in hydrochloric acid solution. The investigated determination method of Po nuclides with solvent extraction was applied to a tap water sample.