• Title/Summary/Keyword: Solvent effects.

Search Result 1,326, Processing Time 0.024 seconds

Absorbance Elevation of Orimax Blue 2N, Orimax Green 151, Quinizarin, Topasol (P-250) and Lubricant (P-8) on the Spectrophotometric Analysis of Unimark 1494 DB (식별제(Unimark 1494DB) 정량시험에서 파란색 색소(Orimax Blue 2N, Orimax Green 151), Quinizarin, 토파졸(P-250) 및 윤활유 원료(P-8)의 흡광도상승 효과)

  • Lee, Ji-Yun;Kim, Chang-Jong
    • YAKHAK HOEJI
    • /
    • v.50 no.5
    • /
    • pp.313-321
    • /
    • 2006
  • There are three kinds of liquid petroleum marker which is extracted by the basic or acidic, and both developer. Korean marker, Unimark 1494 DB (marker) have been spectrophotometrically analysed by the determination of absorbance at 582 nm after base extraction by Unimark 1494 DB Developer C-5 (developer). Some blue dyes which have same reactive radical of marker and can be changed deep blue color in base developer extraction (BDE), may be increased absorbance at 582 nm, but dyes or markers which can be increased the absorbance, were not unclear. In this experiment, effects of three dyes or marker such as Orimax Green 151 (the mixture of CI Solvent Yellow 16 and CI Solvent Blue 70), quinizarin and Orimax Blue 2N (CI Solvent Blue 35), and two solvent such as topasol (P-250) and lubricant (P-8) on the absorbance were studied by HITACHI Recording Spectrophotometer U-3300. It shows that all of them increased absorbance at 582 nm after BDE. Absorbance at 582 nm can be showed 0.0544 by Orimax Green 151 at the concentration of 3.96 mg/l, quinizarin at the concentration of 1.38 mg/l, and Orimax Blue 2N at the concentration of 2.73 mg/l in the artificial petroleum (normal diesel oil: topasol: lubricant=2 : 4: 4), respectively. Absorbance, 0.0544 indicates that concentration of marker is 1.64 mg/l in the reference curves, respectively. And also these results can be showed that the artificial petroleum have about 10% cheep fuel such as kerosene which have marker (16.0 mg/l). Absorbance of P-250 was 0.01361-0.22842 depending upon the purchasing date, and that of P-8 was 0.05644. pH of developer was 14.83, and so this result indicates that Unimark 1494 DB is a base extractable petroleum marker, phenylazophenol (US Patent No. 5,252,106). In the BDE, the slight color of Orimax Blue 2N, Orimax Green 151 and quinizarin in artificial petroleum changed to deep bright blue color, respectively. These result indicate that the absorbance at 582 nm by BDE may be increased not only by azo, diazo, amine and ketone (anthraquinone, coumarin) dyes or markers, but also the contaminants of P-250 and P-8 which have same as reactive radical of dyes or markers.

Effect of Temperature, Solvent Concentration, and pH on the β-Glucan Extraction (β-Glucan 추출에 미치는 온도, 용매 농도 및 pH의 영향)

  • Lee, Sang Hoon;Jang, Gwi Yeong;Kim, Kee Jong;Lee, Mi Ja;Kim, Tae Jip;Lee, Junsoo;Jeong, Heon Sang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.871-877
    • /
    • 2012
  • This study investigated the effects of temperature, solvent concentration, and pH on the ${\beta}$-glucan extraction. Oat bran ${\beta}$-glucan was extracted with different extraction conditions, using various combinations of experiment factors, such as temperature (40, 45, 50, 55, and $60^{\circ}C$), ethanol concentration (0, 5, 10, 15, and 20%), and pH (5, 6, 7, 8, and 9). Under the various extraction conditions, ${\beta}$-glucan extraction rate and overall mass transfer coefficient of oat bran ${\beta}$-glucan, and viscosity of oat bran extracts were investigated. As increasing the extraction time, the extraction rate of ${\beta}$-glucan increased. The overall mass transfer coefficient of ${\beta}$-glucan ranged from $3.36{\times}10^{-6}$ to $8.55{\times}10^{-6}cm/min$, indicating the lowest at the extraction condition of $45^{\circ}C$, 15% and pH 8, and the highest at $50^{\circ}C$, 0% and pH 7. It was significantly greater with increasing extraction temperature and decreasing ethanol concentrations of extraction solvent, except for solvent pH. There were positive correlations among the overall mass transfer coefficient, the extraction rate of ${\beta}$-glucan, and the viscosity of extract.

Optimization of a Crystallization Process by Response Surface Methodology (반응표면분석법을 이용한 결정화 공정의 최적화)

  • Lee, Se-Eun;Kim, Jae-Kyeong;Han, Sang-Keun;Chae, Joo-Seung;Lee, Keun-Duk;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.730-736
    • /
    • 2015
  • Cyclotrimethylene trinitramine (RDX) is a high explosive commonly used for military applications. Submicronization of RDX particles has been a critical issue in order to alleviate the unintended and accidental stimuli toward safer and more powerful performances. The purpose of this study is to optimize experimental variables for drowning-out crystallization applied to produce submicron RDX particles. Effects of RDX concentration, anti-solvent temperature and anti-solvent mass were analyzed by the central composite rotatable design. The adjusted determination coefficient of regression model was calculated to be 0.9984 having the p-value less than 0.01. Response surface plots based on the central composite rotatable design determined the optimum conditions such as RDX concentration of 3 wt%, anti-solvent temperature of $0.2^{\circ}C$ and anti-solvent mass of 266 g. The optimum and experimental diameters of RDX particles were measured to be $0.53{\mu}m$ and $0.53{\mu}m$, respectively. The regression model satisfactorily predicts the average diameter of RDX particles prepared by drowning-out crystallization. Structure of RDX crystals was found to be ${\alpha}$-form by X-ray diffraction analysis and FT-IR spectroscopy.

Antioxidative and Antimicrobial Activities of Extracts from Different Parts of Crotalaria sessiflora L. (활나무 부위별 추출물의 유지에 대한 항산화 효과 및 항균성에 관한 연구)

  • Woo, NaRiYah;Kim, TaeSoo;Park, Chun-Geon;Seong, Ha-Jeong;Ko, Sang-Beam;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.948-952
    • /
    • 2005
  • The antioxidative and antimicrobial properties of the solvent extracts of 3 parts (leaf, stem, root) of Crotalaria sessiflora L. were investigated, in order to find out new natural food additives. The antioxidative activities of the extracts were determined by peroxide value (POV) and the conjugated diene value (CDV) of corn oil stored for 30 days at $60\pm2^{\circ}C$. Each part of the extracts were added as $0.02,\;0.05\%$ and then compared with BHT. The anti oxidative activities were as follows in decreasing order: BHT > LeafEX > StemEX > RootEX > control. The induction period showed that the part of the Crotalaria sessifloria L. group added with solvent extract showed a longer induction period compared with the control group. The part of Crotalaria sessiflora L. solvent extract were shown to have antimicrobial effects on the microorganism such as Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, Salmonella Enteritidis, Pseudomonas flrourescens and Escherichia coli. Especially the effect on the Pseudomonas flrourescens was remarkable.

The Neural Alteration according to Cognitive Load on Working Memory by Organic-Solvent Exposures (유기용제에 노출된 직업군에서 보여진 작업 기억에서의 인지부하에 따른 신경학적 변화)

  • Kim, Tae Geun;Seo, Jeehye;Kim, Yangho;Yun, Byoung-Ju;Chang, Yongmin
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.72-78
    • /
    • 2015
  • Organic solvents are known toxic effects like vertigo, behavioral obstacle, distracting, and peripheral neuropathy in neuron areas. However, there have been few studies how neurotoxic solvents-exposed workers are affected by the cognitive load of preceding working memory tasks. Therefore, we used fMRI as to measure the neural correlates of working memory impairment in occupational workers who had from chronic exposure to organic solvent. Twenty-nine solvent-exposed workers were included in this study. Each participant concluded the verbal N-back tasks (1- and 2-back) during the fMRI acquisition. Within-group analyses showed fronto-parietal networks were active in each condition. Direct comparisons between 1- and 2-back showed higher activation during the 2-back than 1-back. We found that increased activation of these regions at lower task demand is associated with increased cost of implementing.

Biological Activities of Solvent Fractions of Capsicum annuum Leaves (고추잎 용매 분획물의 생리활성)

  • 김지혜;정창호;심기환
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.540-546
    • /
    • 2003
  • Biological activities of solvent fractions obtained from Cnsicum annuum leaves, being used in material of functional food, were examined by the methods of DPPH scavenging activity, reducing power, nitrite scavenging activity, antimicrobial activity and inhibitory effect on tyrosinase activity. The highest yield was obtained from water fraction, where as the lowest yield was obtained from ethyl acetate traction, 16.9% and 0.6%, respectively. Hydrogen donating activity of Capsicum annuum leaves in increased with increasing amount of extract. Reducing power of the ethyl acetate fraction is increased as the amount of extract is increased. Even in the presence of 900 $\mu\textrm{g}$ of ethyl acetate fraction, reducing power was significantly higher than it was fer the control in which there was no extract. Among the various solvent fractions, ethyl acetate fraction showed the strongest scavenging effect on hydrogen peroxide. Nitrite scavenging effects of all concentrations diminished at higher pH, while in the case of pH 1.2, it showed a nitrite scavenging effect of more than 90% at concentration above of ethyl acetate fraction 500 $\mu\textrm{g}$. Among the various solvent fractions from methanol extract of Capsicum annuum leaves, ethyl acetate and butanol fraction showed the strongest antimicrobial activity. Antimicrobial activity of ethyl acetate fraction was 20 mm against Bacillus cereus, 18 mm against Staphylococcus aureus and 17 mm against Streptococcus mutans. Ethyl acetate fraction showed the strongest of inhibitory activity of tyrosinase.

α-Glucosidase Inhibitory Effects for Solvent Fractions from Methanol Extracts of Sargassum fulvellum and Its Antioxidant and Alcohol-Metabolizing Activities (참모자반 메탄올 추출 분획물의 항산화 및 숙취해소능과 α-glucosidase 활성저해효과)

  • Kang, Su Hee;Cho, Eun Kyung;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1420-1427
    • /
    • 2012
  • We investigated the physiological activity and solvent-partitioned fractions of methanol extracts from the green seaweed Sargassum fulvellum. The methanol extract from S. fulvellum was sequentially fractionated with n-hexane (SFMH), methanol (SFMM), buthanol (SFMB), and water (SFMA). We investigated the antioxidant activities of solvent fractions from S. fulvellum by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity and an SOD activity assay. DPPH radical scavenging capacity of SFMM was 79.5% at 10 mg/ml. SOD activity of SFMM was 79.9% at 10 mg/ml. Nitrite scavenging activities of solvent fractions from S. fulvellum were investigated under different pH conditions and showed the most remarkable effect at pH 1.2. In particular, the activity of SFMB was higher than the other fractions. ADH activity and ALDH activity of SFMM were 177.0% and 167.4% at 10 mg/ml, respectively. ${\alpha}$-Glucosidase inhibitory activity of SFMH increased in a dose-dependent manner and was about 94.1% at 2 mg/ml. Elastase inhibitory activity was 93.2% at 2 mg/ml. These results revealed that S. fulvellum extracts have strong antioxidant and alcohol dehydrogenase activities and ${\alpha}$-glucosidase inhibitory activity, suggesting that S. fulvellum extracts have potential as a source of natural products for health and beauty.

A Study on Desorption Efficiency for Polar Solvents Collected on Charcoal Tube (활성탄관에 포집된 극성유기용제의 탈착효율에 관한 연구)

  • Kim, Kyeong-Ran;Paik, Nam-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.1
    • /
    • pp.104-118
    • /
    • 1995
  • This study was performed to evaluate factors affecting desorption of organic solvents collected on charcoal tube and to find out the optimum condition. Desorption efficiency for polar analytes was improved when several polar desorption solvents such as methanol, dimethylformamide(DMF), 2-(2-butoxyethoxy)ethanol were added to carbon disulfide($CS_2$). The best improvement was achieved when 10% dimethylformamide(DMF) in $CS_2$ was used as desorption solvent. During storage of polar analytes, recovery was greatly reduced. Especially, the recovery of cyclohexanone was decreased to 18.1 % after a month storage at $34^{\circ}C$. After two weeks storage, recovery of polar analytes was sharply decreased. Water adsorbed on charcoal interfered the recovery of polar analytes but didn't interfere that one of nonpolar solvent, toluene. When 10% DMF in $CS_2$ was used as desorption solvent, the effect of water on recovery was decreased, comparing with Desorption efficiency increased when analyte loading increased, and usage of 10% DMF in $CS_2$ decreased the loading effect. Increasing volume of desorption solvent was not effective to improve desorption efficiency of analytes when 10% DMF was used. Continuous shaking and sonication is not helpful to increase the desorption efficiency of analytes except cyclohexanone using 10% DMF. When silica gel used as adsorbent, methanol was better desorbent than dimethylsulfoxide. Analytes adsorbed on silica gel showed high recovery in low concentration and less affected by humidity. On the basis of this study, the following conclusions have been drawn. To improve the recovery of polar organic materials in air samples, it is necessary to analyze samples as soon as possible after they were collected. Otherwise, samples must be stored at low temperature. Using two components of desorption solvents, such as 10% DMF in $CS_2$, the effects of loading and humidity decreased for polar analytes such as methyl ethyl ketone and methyl isobutyl ketone. When work place has high humidity with low concentration of polar organic solvents, silica gel can be used as adsorbent, because it produces quantitative recovery for polar analytes at this condition. But it should be noted that high humidity makes breakthrough easy in silica gel samples.

  • PDF

Fates of water and salts in non-aqueous solvents for directional solvent extraction desalination: Effects of chemical structures of the solvents

  • Choi, Ohkyung;Kim, Minsup;Cho, Art E.;Choi, Young Chul;Kim, Gyu Dong;Kim, Dooil;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2019
  • Non-aqueous solvents (NASs) are generally known to be barely miscible, and reactive with polar compounds, such as water. However, water can interact with some NASs, which can be used as a new means for water recovery from saline water. This study explored the fate of water and salt in NAS, when saline water is mixed with NAS. Three amine solvents were selected as NAS. They had the same molecular formula, but were differentiated by their molecular structures, as follows: 1) NAS 'A' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain, 2) NAS 'B' with symmetrical structure and having the hydrophilic group (NH) at the middle of the straight carbon chain, 3) NAS 'C' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain but possessing a hydrophobic ethyl branch in the middle of the structure. In batch experiments, 0.5 M NaCl water was blended with NASs, and then water and salt content in the NAS were individually measured. Water absorption efficiencies by NAS 'B' and 'C' were 3.8 and 10.7%, respectively. However, salt rejection efficiency was 98.9% and 58.2%, respectively. NAS 'A' exhibited a higher water absorption efficiency of 35.6%, despite a worse salt rejection efficiency of 24.7%. Molecular dynamic (MD) simulation showed the different interactions of water and salts with each NAS. NAS 'A' formed lattice structured clusters, with the hydrophilic group located outside, and captured a large numbers of water molecules, together with salt ions, inside the cluster pockets. NAS 'B' formed a planar-shaped cluster, where only some water molecules, but no salt ions, migrated to the NAS cluster. NAS 'C', with an ethyl group branch, formed a cluster shaped similarly to that of 'B'; however, the boundary surface of the cluster looked higher than that of 'C', due to the branch structure in solvent. The MD simulation was helpful for understanding the experimental results for water absorption and salt rejection, by demonstrating the various interactions between water molecules and the salts, with the different NAS types.

MMP-2 and MMP-9 Inhibitory Effects of Different Solvent Fractions from Corydalis heterocarpa (염주괴불주머니 분획물의 MMP-2, MMP-9 발현 억제 효과)

  • Yu, Ga Hyun;Karadeniz, Fatih;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.980-986
    • /
    • 2021
  • Natural products have always been an attractive source in terms of novel anti-metastatic compounds which can hinder MMP expression and activity. Corydalis heterocarpa is a salt marsh plant found in the seashores throughout Korea. Its yellow flowers and spikes have been an ingredient in folk medicine to treat spasm and contractions. The present study assessed the potential of different solvent-based fractions from the crude extract of Corydalis heterocarpa (CHE), a halophyte with reported bioactivities, to suppress the PMA-induced MMP expression in human fibrosarcoma HT-1080 cells. The solvent fractions which were named after the solvent used for fractionation (n-hexane, 85% aqueous (aq.) methanol (MeOH), n-butanol (BuOH), and H2O were shown to inhibit the both elevated mRNA and protein expression levels of MMP-2 and MMP-9 and simultaneously relieved the suppression on the expression of the endogenous MMP inhibitors TIMP-1 and TIMP-2. Results indicated that the CHE fractions might intervene with the PMA-induced activation of the MAPK signaling which is the upstream activator of MMP overexpression. Among tested samples, 85% aq. MeOH and n-hexane fractions of CHE was determined to be the most active and future studies to isolate the bioactive substances responsible for the regulation of the MMP expression are, therefore, urged. In conclusion, C. heterocarpa was shown to be a potential source of anti-metastatic compounds and n-Hexane and MeOH fractions might yield lead molecules to develop novel MMP inhibitors.