• Title/Summary/Keyword: Solvent effects

Search Result 1,322, Processing Time 0.035 seconds

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

Coarsening Phenomena in Polymer-Solvent Systems-A Review (고분자 용액에서의 Coarsening 현상)

  • 송승원
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.49-56
    • /
    • 1997
  • In order to understand the formation of polymeric membranes or microcellular foams, phase separation phenomena in polymer solutions should be understood. The present review examines the progress made in the understanding of these phenomena, with emphasis on selected polymer-solvent systems. In the case of polymer-solvent systems, coarsening is of particular importance as it may come to dominate or overshadow spinodal decomposition effects within the first minute or few minutes of phase separation. In this article, some of the most important theoretical models of late stage of phase separation are reviewed, and recent experimental studies on coarsening in polymer-solvent systems are studied.

  • PDF

Effects of Polymer Material and Solvent Properties on the Performance of Organic Solvent Nanofiltration Membranes (고분자 소재와 용매특성에 따른 유기용매 나노여과막 성능 분석)

  • Choi, JiHyun;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2022
  • In this work, the solvent permeation and separation performance of organic solvent nanofiltration (OSN) membranes were evaluated. Particularly, the PuraMem (PM) series developed for nonpolar solvents were analyzed and tested in dead-end filtration system. PM membranes exhibited higher permeance for nonpolar solvents compared to polar solvents, and their rejection data did not follow conventional trends with respect to solute size. The data showed that simple solution-diffusion model is not suitable to describe the OSN membrane behavior, and a better solvent-solute-membrane interaction parameter must be developed.

Quantitative Approaches for the Determination of Volatile Organic Compounds (VOC) and Its Performance Assessment in Terms of Solvent Types and the Related Matrix Effects

  • Ullah, Md. Ahsan;Kim, Ki-Hyun;Szulejko, Jan E.;Choi, Dal Woong
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the quantitative analysis of volatile organic compounds (VOC), the use of a proper solvent is crucial to reduce the chance of biased results or effect of interference either in direct analysis by a gas chromatograph (GC) or with thermal desorption analysis due to matrix effects, e.g., the existence of a broad solvent peak tailing that overlaps early eluters. In this work, the relative performance of different solvents has been evaluated using standards containing 19 VOCs in three different solvents (methanol, pentane, and hexane). Comparison of the response factor of the detected VOCs confirms their means for methanol and hexane higher than that of pentane by 84% and 27%, respectively. In light of the solvent vapor pressure at the initial GC column temperature ($35^{\circ}C$), the enhanced sensitivity in methanol suggests the potential role of solvent vapor expansion in the hot injector (split ON) which leads to solvent trapping on the column. In contrast, if the recurrent relationships between homologues were evaluated using an effective carbon number (ECN) additivity approach, the comparability assessed in terms of percent difference improved on the order of methanol (26.5%), hexane (6.73%), and pentane (5.24%). As such, the relative performance of GC can be affected considerably in the direct injection-based analysis of VOC due to the selection of solvent.

Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems

  • Ryu, Zoon-Ha;Lim, Gui-Taek;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1293-1302
    • /
    • 2003
  • Rate constants at various temperatures and activation parameters are reported for solvolyses of acyl chlorides (RCOCl), with R = Me, Et, i-Pr, t-Bu, cyclopentylmethyl, benzyl, thiophenylmethyl, 2-phenylethyl, diphenylmethyl, and phenylthiomethyl in 100% ethanol, 100% 2,2,2-trifluoroethanol (TFE), 80% v/v ethanol/ water and 97% w/w TFE/water. Additional rate constants for solvolyses with R = Me, t-Bu, and $PhCH_2$ are reported for TFE/water and TFE/ethanol mixtures, and for solvolyses with R = t-Bu, and PhCH2 are reported for 1,1,1,3,3,3-hexafluoropropan-2-ol/water mixtures, as well as selected kinetic solvent isotope effects (MeOH/MeOD and TFE). Taft plots show that electron withdrawing groups (EWG) decrease reactivity significantly in TFE, but increase reactivity slightly in ethanol. Correlation of solvent effects using the extended Grunwald-Winstein (GW) equation shows an increasing sensitivity to solvent nucleophilicity for EWG. The effect of solvent stoichiometry in assumed third order reactions is evaluated for TFE/ethanol mixtures, which do not fit well in GW plots for R = Me, and t-Bu, and it is proposed that one molecule of TFE may have a specific role as electrophile; in contrast, reactions of substrates containing an EWG can be explained by third order reactions in which one molecule of solvent (ethanol or TFE) acts as a nucleophile, and a molecule of ethanol acts as a general base catalyst. Isokinetic relationships are also investigated.

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

A Study of Effects with Using After Mixing Ample and Permanent Solvent During Permanent Wave Operating, of Dyod Hairs (염색모발에서 퍼머시술시 퍼머 1제와 앰플의 혼합사용에 대한 효과)

  • Lee, Eun-Kyeung;Choi, Jeung-Sook
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.3 no.3 s.3
    • /
    • pp.56-63
    • /
    • 2005
  • In the study of permanent waving method after mixing ample and permanent wave solvent in permanent wave the dyed humans hair are as follows; First, Permanent waving method after mixing ample and permanent wave solvent is that the better effective way in permanent wave the dyed humans hair because permanent waving cycle is constant and hair cuticle is glossy. Second, This study is not interpret in permanent wave dyed humans hair that tensile strength is effect of permanent waving method after mixing ample and permanent wave solvent. A extension degree is effect of permanent waving method after mixing ample and permanent wave solvent use indifferent ample treatment method. Third, Hair cuticle damages are a little permanent waving method after mixing ample and permanent wave solvent in permanent wave dyed humans hair.

  • PDF

Effect of Dihydroxybenzoic Acid Isomers on the Analysis of Polyethylene Glycols in MALDI-MS

  • Lee, Ae-Ra;Yang, Hyo-Jik;Kim, Yang-Sun;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1127-1130
    • /
    • 2009
  • The effects of different dihydroxybenzoic acid (DHB) isomers, when used as matrix materials in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), were investigated in analyses of polyethylene glycol (PEG) polymers. PEG polymers ranging from 400 to 8,000 Da were prepared in different DHB isomer matrices using solvent-based and solvent-free methods. PEG samples were detected only in matrices of 2,3-DHB, 2,5-DHB, and 2,6-DHB while the most intense peaks were observed using 2,6-DHB in both solvent-free and solvent-based preparations.