• 제목/요약/키워드: Solution space discretization

검색결과 31건 처리시간 0.026초

종방향 진동해석에 비구조적 유한요소 적용 (Application of the Unstructured Finite Element to Longitudinal Vibration Analysis)

  • 김치경
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2006
  • 본 연구는 파 해석에 있어서 공간-시간 분할 개념을 도입하여 켈러킨 방법으로 해석하였다. 공간-시간 유한요소법은 오직 공간에 대해서만 분할하는 일반적인 유한요소법보다 간편하다. 비교적 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 방법을 제시하며 가중잔차법이 공간-시간 영역에서 유한요소 정식화에 이용되었다. 큰 시간 간격으로 인하여 문제의 해가 발산하는 경우가 동적인 문제에서 흔히 발생한다. 이러한 결점을 보완한 사각형 공간-시간 요소를 취하여 문제를 해석하고 해의 안정에 대해 기술하였다. 다수의 수치해석을 통하여 이 방법이 효과적 임을 알 수 있었다.

Grid Discretization Study for the Efficient Aerodynamic Analysis of the Very Light Aircraft (VLA) Configuration

  • Sitio, Moses;Kim, Sangho;Lee, Jaewoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.122-132
    • /
    • 2013
  • In this research the development of unstructured grid discretization solution techniques is presented. The purpose is to describe such a conservative discretization scheme applied for experimental validation work. The objective of this paper is to better establish the effects of mesh generation techniques on velocity fields and particle deposition patterns to determine the optimal aerodynamic characteristics. In order to achieve the objective, the mesh surface discretization approaches used the VLA prototype manufacturing tolerance zone of the outer surface. There were 3 schemes for this discretization study implementation. They are solver validation, grid convergence study and surface tolerance study. A solver validation work was implemented for the simple 2D and 3D model to get the optimum solver for the VLA model. A grid convergence study was also conducted with a different growth factor and cell spacing, the amount of mesh can be controlled. With several amount of mesh we can get the converged amount of mesh compared to experimental data. The density around surface model can be calculated by controlling the number of element in every important and sensitive surface area of the model. The solver validation work result provided the optimum solver to employ in the VLA model analysis calculation. The convergence study approach result indicated that the aerodynamic trend characteristic was captured smooth enough compared with the experimental data. During the surface tolerance scheme, it could catch the aerodynamics data of the experiment data. The discretization studies made the validation work more efficient way to achieve the purpose of this paper.

APPROXIMATION OF THE SOLUTION OF STOCHASTIC EVOLUTION EQUATION WITH FRACTIONAL BROWNIAN MOTION

  • Kim, Yoon-Tae;Rhee, Joon-Hee
    • Journal of the Korean Statistical Society
    • /
    • 제33권4호
    • /
    • pp.459-470
    • /
    • 2004
  • We study the approximation of the solution of linear stochastic evolution equations driven by infinite-dimensional fractional Brownian motion with Hurst parameter H > 1/2 through discretization of space and time. The rate of convergence of an approximation for Euler scheme is established.

ANALYSIS OF A MESHFREE METHOD FOR THE COMPRESSIBLE EULER EQUATIONS

  • Kim, Yong-Sik;Pahk, Dae-Hyeon
    • 대한수학회지
    • /
    • 제43권5호
    • /
    • pp.1081-1098
    • /
    • 2006
  • Mathematical analysis is made on a mesh free method for the compressible Euler equations. In particular, the Moving Least Square Reproducing Kernel (MLSRK) method is employed for space approximation. With the backward-Euler method used for time discretization, existence of discrete solution and it's $L^2-error$ estimate are obtained under a regularity assumption of the continuous solution. The result of numerical experiment made on the biconvex airfoil is presented.

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

An Effective Orientation-based Method and Parameter Space Discretization for Defined Object Segmentation

  • Nguyen, Huy Hoang;Lee, GueeSang;Kim, SooHyung;Yang, HyungJeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3180-3199
    • /
    • 2013
  • While non-predefined object segmentation (NDOS) distinguishes an arbitrary self-assumed object from its background, predefined object segmentation (DOS) pre-specifies the target object. In this paper, a new and novel method to segment predefined objects is presented, by globally optimizing an orientation-based objective function that measures the fitness of the object boundary, in a discretized parameter space. A specific object is explicitly described by normalized discrete sets of boundary points and corresponding normal vectors with respect to its plane shape. The orientation factor provides robust distinctness for target objects. By considering the order of transformation elements, and their dependency on the derived over-segmentation outcome, the domain of translations and scales is efficiently discretized. A branch and bound algorithm is used to determine the transformation parameters of a shape model corresponding to a target object in an image. The results tested on the PASCAL dataset show a considerable achievement in solving complex backgrounds and unclear boundary images.

Using the Monte Carlo method to solve the half-space and slab albedo problems with Inönü and Anlı-Güngör strongly anisotropic scattering functions

  • Bahram R. Maleki
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.324-329
    • /
    • 2023
  • Different types of deterministic solution methods were used to solve neutron transport equations corresponding to half-space and slab albedo problems. In these types of solution methods, in addition to the error of the numerical solutions, the obtained results contain truncation and discretization errors. In the present work, a non-analog Monte Carlo method is provided to simulate the half-space and slab albedo problems with Inönü and Anlı-Güngör strongly anisotropic scattering functions. For each scattering function, the sampling method of the direction of the scattered neutrons is presented. The effects of different beams with different angular dependencies and the effects of different scattering parameters on the reflection probability are investigated using the developed Monte Carlo method. The validity of the Monte Carlo method is also confirmed through the comparison with the published data.

2차원 동적 진동문제의 공간-시간 유한요소법 적용 (An Application of Space and Time Finite Element Method for Two-Dimensional Transient Vibration)

  • 김치경
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.143-149
    • /
    • 2006
  • 본 논문은 2차원 동적 진동문제를 공간-시간 유한요소법으로 해석하고 있다. 공간-시간 유한요소법은 공간만 분할하는 재래식 유한요소해석에 비해 보다 해를 빠르고 쉽게 얻을 수 있다. 상대적으로 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 공간-시간 유한요소 근사법을 제시한다. 가중잔차법으로 공간-시간 영역에 대해 유한요소법을 정식화하였으며 선형 사변형 공간-시간 유한요소를 선택하여 해의 안정성에 관하여 언급하였다. 일반적 동적문제에서는 상대적인 큰 시간간격으로 인하여 해의 불안정을 야기 시키고 있으나 본 연구에서는 수치의 안정성을 보여주고 있다. 비구조 공간-시간 유한요소법은 재래식 수치해석에서 흔히 발생하는 해의 불안정성에 대한 결점을 보완함은 물론 효과적인 계산방법을 지니고 있다. 이 방법의 효율성을 위해 수치예제들을 제시하였다.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR A SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS ARISING IN COMPUTATIONAL NEUROSCIENCE

  • DABA, IMIRU TAKELE;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.655-676
    • /
    • 2021
  • A parameter uniform numerical scheme is proposed for solving singularly perturbed parabolic partial differential-difference convection-diffusion equations with a small delay and advance parameters in reaction terms and spatial variable. Taylor's series expansion is applied to approximate problems with the delay and advance terms. The resulting singularly perturbed parabolic convection-diffusion equation is solved by utilizing the implicit Euler method for the temporal discretization and finite difference method for the spatial discretization on a uniform mesh. The proposed numerical scheme is shown to be an ε-uniformly convergent accurate of the first order in time and second-order in space directions. The efficiency of the scheme is proved by some numerical experiments and by comparing the results with other results. It has been found that the proposed numerical scheme gives a more accurate approximate solution than some available numerical methods in the literature.

건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법 (Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building)

  • 이주희;장진우;이현균;이용준;이규성
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.