• 제목/요약/키워드: Solution combustion

검색결과 316건 처리시간 0.036초

열병합 발전소용 목질계 바이오매스의 연소 특성에 관한 연구 (A Study on Combustion Characteristics of Wood Biomass for Cogeneration Plant)

  • 류정석;김기석;박수진
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.296-300
    • /
    • 2011
  • 본 연구에서는 열병합 발전소의 원료로서 목질계 바이오매스로 임목 부산물, 폐목재, 야자수 부산물, 야자수 껍질의 연소 특성을 조사하기 위하여 열중량 분석기를 이용하여 연소 실험을 수행하였다. 목질계 바이오매스의 비교군으로는 일반적인 석탄을 사용하였다. 열중량 분석기 결과로부터, 목질계 바이오매스의 연소는 석탄과 비교하여 낮은 온도인 $280^{\circ}C$에서 $420^{\circ}C$ 구간에서 가장 활발한 연소반응을 보였음을 확인 할 수 있었다. 열중량분석에 의하여 측정된 활성화 에너지에 있어서 임목 부산물은 석탄 및 기타 목질계 바이오매스와 비교하여 가장 낮은 활성화 에너지 값을 나타내었으며, 또한 목질계 바이오매스의 경우 석탄과 비교하여 연소반응속도가 크게 증가함을 확인 할 수 있었다. 이는 목질계 바이오매스의 높은 연소개시 속도를 보이는 것을 나타내며, 이러한 결과는 석탄과 비교하여 낮은 비등점의 휘발분을 많이 포함하는 목질계 바이오매스의 특성에 기인하는 것으로 판단된다.

Parameters affecting the recovery of silver (Ag) using photocatalytic ZnO nanopowder prepared by solution-combustion method.

  • B.B. Bhattarai;Lee, Ju-Hyeon;Park, Sung
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.49-49
    • /
    • 2003
  • Nanometer sized zinc oxide (ZnO) powder was synthesized by a novel "solution-combustion method" and its photocatalytic activity was evaluated with the recovery of Ag from a used photofilm developing solution. Different parameters affecting the reaction rates like wavelength of the W light used, reaction temperature, mass of the used photocatalyst, and effect of scavenger were tested. The optimum parameters were found as follows. UV wavelength of less than 385nm, reaction temperature between 40- 60 $^{\circ}C$, photocatalyst concentration of 3-6 g/1, and scavenger concentration of 0.3-0.4 g/1.

  • PDF

CWM 단일액적의 연소특성에 관한 연구 (An Experimental Study on the Combustion Characteristics of CWM Single Droplet)

  • 박종상;이태원;하종률;정성식
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.402-410
    • /
    • 2000
  • As the combustion process of CWM consists of the water evaporation, the release and combustion of volatile matter, and the combustion of char for every particle, it is more complex than that of existent liquid fuel. Though the many studies on CWM combustion have been carried out by the single droplet using hanging methods or the multiple droplet using atomization methods, any report don't presents definite solution about the effects by the initial water evaporation and combustion of volatile. When CWM is suddenly exposed in the high temperature surroundings, the internal water evaporates and then each droplet builds up pores. Besides, porosity rate changes along the temperature of surroundings, the composition ratio of CWM, and the initial diameter of droplet. In result, because it affects the whole combustion rate, the combustion of CWM has complex mechanism as compared with the combustion of liquid or gas fuel. Therefore, concentrating on porous structure of CWM, this study has proceeded to acquire the basic data on the CWM injection combustion and closely examines the effects of the first stage combustion on the whole combustion by measuring the diameter variations, pore rate, mass fraction burned, and the internal temperature changes of CWM droplet. The results demonstrate that $60{\sim}70%$ of initial mass is reduced during water evaporation and volatile combustion period, and swelling rate, mass faction burned, and density variation are greatly concerned with atomization of CWM etc.

촉매연소를 이용한 수소버너의 작동 특성에 관한 연구 (A Study about an Operating Characteristic of Hydrogen Burner by Using Catalytic Combustion)

  • 김태영;박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2008
  • Human has faced in lack of fossil fuel and environmental crisis because of high population growth and development of industry. Hydrogen, unlimited amount and clean resource from water electrolysis, is remarkably known as the solution of recent energy crisis. One of the special characteristics of hydrogen is that a little amount of catalytic such as platinum and palladium makes nonflammable combustion, in other words catalyst combustion. Catalytic combustion fueled by hydrogen is environmentally friendly. This paper considers some comparisons of characteristic of catalytic combustion between a single layer of platinum catalyst, double layer of platinum and nickel catalysts and mixture of platinum and nickel catalysts. Some experiments of temperature distribution at different positions and characteristic of combustion in low temperature region were done in order to find an applicable possibility as a house-cooking burner.

미분탄 연소로에서 연소특성에 미치는 석탄특성에 관한 연구 (Effect of Coal Properties on Combustion Characteristics in a Pulverized Coal Fired Furnace)

  • 이병화;송주헌;이천성;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.737-747
    • /
    • 2009
  • This study is to investigate the effect of the moisture, volatile matter and particle size in the coal on the pulverized coal combustion characteristics using CFD. The results show that as the moisture content in coal increases, flame temperature decreases because of heat loss driven from latent heat of vaporization and reduction of heating value. As the volatile matter content in the coal increases, the temperature in the region near the burner increases, while the temperature in rear region of boiler decreases. The solution to keep the temperature in the rear region of boiler is suggested that particle size is needed to be larger. As the particle size increases, the temperature in the rear region of boiler show tendency to increase, for combustion burning time of coal could be extended.

덤프 연소기에서의 열음향 불안정에 관한 수치적 연구 (Numerical Simulation on Thermoacoustic Instability in the Dump Combustor)

  • 김현준;배수호;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.294-301
    • /
    • 2005
  • The instabilities in rocket engines and gas turbine combustors due to the interaction between the fluid flow (acoustics) and the heat transfer (thermal energy) are called thermoacoustic or combustion instabilities. Almost all analysis assumes constant hot section temperature for Modern mathematical analysis of acoustic oscillations in Rijke type devices. However, it is impossible to predict whether a system is stable or not because the flame or heater response model can have a dramatic effect on predicted growth rates. In this study, A standard ${\kappa}-{\varepsilon}$ turbulent model and hybrid combustion model(eddy breakup model and chemical reaction) were used. After steady solution was gotten, unsteady calculation is simulated by perturbating on pressure boundary. As a result, we obtained the relationship of equivalence ratio and frequency by numerical simulation, and they are comparable to the experimental result. In addition, in spite of these results, there are limitations of using turbulent and combustion model in simulation method of thermoacoutic instability

  • PDF

건물내 화재에 의한 연소가스 거동 예측에 관한 연구 (A Study on the Prediction of Combustion Gas Behavior Induced by Fire in a Building)

  • 박희용;박경우
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.267-281
    • /
    • 1994
  • The Combustion gas behavior induced by fire in a building is numerically investigated. The typical building for this analysis is partially divided by a vertical baffle projecting from the ceiling. The solution procedure includes the low Reynolds number ${\kappa}-{\varepsilon}$ model for the turbulent flow and the discrete ordinates method is used for the calculation of radiative heat transfer equation. The effects of the location and size of fire source and baffle length on velocity and temperature distributions, species mass fraction and flame location are analyzed. As the results of this study, it is found that the case when the fire source is located at the vertical wall is more dangerous than at the bottom wall in view of the combustion products and flame location. It is also found that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

제철소용 가열로 내 슬랩 가열 특성의 3차원 비정상 해석 (3D Unsteady Numerical Analysis of Slab Heating Characteristics in a Reheating Furnace for Steel Mill Company)

  • 한상헌;김동민;백승욱;김창영
    • 한국연소학회지
    • /
    • 제11권1호
    • /
    • pp.34-42
    • /
    • 2006
  • Numerical analysis code has been developed to investigate the slab heating characteristics in a reheating furnace of a steel mill company. Unsteady 3-Dimensional behaviour can be predicted with the developed code. Premixed flame model is adopted for combustion phenomena and eddy dissipation model is used for turbulent combustion. Non -gray FVM radiation method is used to get a better accurate radiative solution. Slab movement can be fully traced from entrance into a reheating furnace until it#s exit and computation is performed during that period.

  • PDF