• 제목/요약/키워드: Solution Treatment Temperature

검색결과 1,126건 처리시간 0.032초

Zi-Zn Ferrite의 전파흡수특성에 미치는 열처리온도의 영향 (Influence of Heat-treatment Temperature on Microwave Absorbing Properities of Ni-Zn Ferrite)

  • 조성백;권경일;최경구;김성수;김재묵
    • 한국세라믹학회지
    • /
    • 제29권3호
    • /
    • pp.177-182
    • /
    • 1992
  • The effect of heat-treatment temperature on the microwave absorbing properties was investigated in Ni0.8Zn0.2Fe2O4 specimens. The composite specimens were prepared by modling and curing the mixture of prereacted ferrite powder and silicone rubber. The measurement of complex permeability and permittivity was made by the reflection/transmission method. The most sensitive material constants with heat-treatment temperature is the imaginary (loss) component of permeability. The higher the heat-treatment temperature, the greater the magnetic loss. The composite specimens with high magnetic loss exhibited superior microwave absorbing properties. The quantitative estimation of microwave absorbing properties were made by plotting the observed material constants on the calculated solution map of impedance-matching.

  • PDF

양모직물의 염착농도에 미치는 저온플라즈마 처리의 영향 (Effect of Low Temperature Plasma Pretreatment on the Color Depth of Wool Fabrics)

  • 배소영;이문철
    • 한국염색가공학회지
    • /
    • 제4권2호
    • /
    • pp.76-83
    • /
    • 1992
  • Wool tropical and nylon taffeta were treated with low temperature plasma of $O_2$, $N_2$, NH$_3$, CF$_4$ and CH$_4$ for the intervals of 10 to 300 sec, and then dyed with leveling and milling type acid dyes in presence or absence of buffer solution. From the color depth of dyed fabrics, effect of plasma gases, treated time, dyeing time and temperature on dyeing property was studied. The results of the experiment can be summarized as follows: 1) The plasma treatments except methane gas increased the color depth of dyed wool fabrics, but not that of dyed nylon fabrics regardless of the plasma gases used. 2) The color depth of wool fabrics dyed in the dye bath without buffer solution was increased by the low temperature plasma, especially increased much more by CF$_4$ plasma treatment. It is found that with the identification of F- ion in the residual dye bath the hydrogen fluoride gas was adsorbed on wool fabrics in the plasma treatment. 3) The color depth of wool fabrics was increased with the time of $O_2$ and CF$_4$ plasma treatments. 4) In both cases of the leveling and milling type acid dyes, the rate of dyeing was increased in the low temperature plasma treatments, and it is found that the leveling type acid dye increased the color depth at relatively low temperature below 4$0^{\circ}C$, compared with the milling type acid dye.

  • PDF

다구찌 설계를 이용한 듀플렉스 스테인리스강 S31083용 DL-EPR 시험용액의 최적화 (Optimization of DL-EPR Test Solution for Duplex Stainless Steel S31083 Using Taguchi Design)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.77-84
    • /
    • 2021
  • This study aims to optimize the DL-EPR test solution for duplex stainless steel S31083 using the Taguchi design. The test solution parameters applied to the Taguchi design are H2SO4, NaCl, KSCN concentration, and temperature. In the experimental design, an orthogonal array of 4 levels 4 factor L16(44) was used. Output values for the orthogonal array were used for resolution (degree of sensitization) and selective etch (Ia) values. The optimal test solution conditions were selected by comparing the normalized S/N ratio for the two reaction properties. As a result, the H2SO4 and NaCl were identified as the main factors influencing the sensitivity measurement, but the delta statistics showed that the KSCN concentration and temperature had relatively low influence. The optimal condition was identified as 1.5 M H2SO4+0.03 M KSCN+1.5M NaCl at 30 ℃. The degree of sensitization presented a tendency to depend on the heat treatment temperature and time in the optimal test solution. This investigation confirmed the possibility of optimizing the experiment solution for the DL-EPR test of stainless steel using the Taguchi technique.

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature

  • Hur, S.Y.;Jeon, J.M.;Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.281-287
    • /
    • 2020
  • Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.

STS 431 마르텐사이트계 스테인리스강의 고온 가스 질화 열처리에 따른 상변화 (Phase Changes of the STS 431 Martensitic Stainless Steel after High Temperature Gas Nitriding Treatment)

  • 유대경;공정현;이해우;강창룡;김영희;성장현
    • 열처리공학회지
    • /
    • 제21권5호
    • /
    • pp.244-250
    • /
    • 2008
  • This study has investigated the surface phase change, hardness variation, surface precipitates, nitrogen content and corrosion resistance in STS 431 (17Cr-2Ni-0.2C-0.01Nb) martensitic stainless steel after high temperature gas nitriding (HTGN) treatment at the temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The HTGN-treated surface layer appeared $Cr_2N$ of rod type, carbo-nitride of round type and fine precipitates in the austenite matrix. On the other hand the interior region where the nitrogen was not permeated, exhibited martensite phase. The surface hardness showed 250~590 HV, depending on the HTGN treatment conditions, while the interior martensitic phase represented 520 HV. The permeation depth of nitrogen increased with increasing the HTGN-treated temperature. The nitrogen concentration of the surface layer appeared approximately ~0.17% at $1100^{\circ}C$. On comparing the corrosion resistance between solution-annealed and HTGN-treated steels, the corrosion resistance of HTGN-treated steel was superior to that of solution-annealed specimens.

Nb 첨가 합금강의 미세조직과 결정립 조대화 거동 (Microstructure and Abnormal Grain Coarsening Behavior of Nb-microalloyed Steel)

  • 김성진;최정후;김민희;류민환;박재현;신재혁;신우철;김민욱;정재길;이석재
    • 열처리공학회지
    • /
    • 제37권4호
    • /
    • pp.155-162
    • /
    • 2024
  • SCr420H steel which is commonly utilized for automotive components requires the carburizing heat treatment process. Abnormal grain growth during this treatment significantly affects the mechanical properties of the steel parts. Consequently, a process designed to prevent abnormal grain growth at certain elevated temperatures is essential. For enhanced grain refinement, we considered the addition of Nb in SCr420H steel. The experimental condition of the carburizing heat treatment involved reheating the steel sample to temperatures between 940℃ and 1080℃. Using scanning electron microscopy, we examined the microstructure of specimens treated with the secondary solution, revealing an organization of bainite and ferrite. Transmission electron microscopy was utilized to determine the type, shape, and size of the carbonitrides, showing a high fraction of AlN at the secondary solution treatment temperature of approximately 1050℃ and of (Nb,Ti)(C,N) around 1200℃. AlN particles measured about 100 nm and (Nb,Ti)(C,N) about 50 nm. Optical microscopy was utilized to assess grain size variations at different secondary solution treatment temperatures. It is noted that the temperature at which abnormal grain coarsening occurred rose with increasing secondary solution treatment temperatures, indicating a greater influence of (Nb,Ti)(C,N) with higher heat treatment temperatures. This research provides reference data for preventing abnormal grain growth in Nb-added low alloy steels undergoing carburizing heat treatment.

초음파분무열분해법에 의한 나노 텅스텐 분말의 형성 및 특성에 관하여 (The Characteristics and Formation of Tungsten Nano-Powder by Ultrasonic Spray Pyrolysis Method)

  • 이호진;윤중현;최진일
    • 한국표면공학회지
    • /
    • 제41권4호
    • /
    • pp.174-179
    • /
    • 2008
  • Nanosize tungsten powder was synthesized by ultrasonic spray pyrolysis method through a solution containing ammonium metatungstate hydrate $[(NH_4)_6W_{12}O_{39}{\cdot}H_2O]$ and reduction treatment. It was expected the improvement of mechanical properties due to increasing surface free energy and surface activity. Starting solutions with each concentration, reaction temperature and reduction treatment were significantly influenced on the formation of tungsten size and phase. It was found that particle size was decreased with concentration of starting solution and surface tension were decreased. The particle size was increased at thermal decomposition temperature above $600^{\circ}C$ by neck growth of interparticles. Tungsten particles were formed by reduction reaction in atmosphere of hydrogen gas at the temperature above $700^{\circ}C$.

순환동전위 분극실험을 이용한 스테인리스강의 그린데스용액에서 전기화학적 특성에 미치는 온도의 영향 (Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test)

  • 황현규;김성종
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.266-280
    • /
    • 2021
  • Since 2020, the International Maritime Organization (IMO) has updated regulations on the sulfur content to be less than 0.5% in exhaust gas emitted from ships. Accordingly, the exhaust gas post-treatment device for ships, which is SOx/NOx reduction technology, was introduced. However, the exhaust gas post-treatment device is suffering corrosion because of the harsh corrosive environment formed by sulfate and chlorine oxide through the desulfurization process. In this investigation, cyclic potentiodynamic polarization (CPDP) experiment for UNS S31603 and UNS N08367 was performed in a green death solution that simulates the environment of a desulfurization device. The corrosion rate of UNS S31603 at the highest temperature was about 3 times higher than that of UNS N83067. Also, electron microscope scan revealed corrosion type UNS N83067 presents intergranular corrosion tendency. On the other hand, UNS S31603 was observed as general corrosion. The α values of UNS N08367 at 30 ℃ and 60 ℃ were higher than those of UNS S31603, thus UNS N08367 is considered to have a higher local damage tendency. Whereas, since the α value of UNS S31603 at 90 ℃ is larger than that of UNS N08367, UNS S31603 is considered to have a higher local damage trend.

고압 다이캐스팅으로 제조된 Al-10Si-0.3Mg-0.6Mn 합금에서 blister 발생과 강도의 균형을 고려한 최적 열처리 공정 설계 (Optimization of Solid Solution Treatment Process for a High Pressure Die Casting Al-10Si-0.3Mg-0.6Mn alloy to avoid Blistering and Improve the Strength of the Alloy)

  • 김수배;조영희;조민수;이정무
    • 한국주조공학회지
    • /
    • 제40권3호
    • /
    • pp.66-75
    • /
    • 2020
  • The aim of this study was to optimize a solid solution treatment for a high pressure die casting Al-10Si-0.3Mg-0.6Mn alloy to avoid blistering and to improve the strength of the alloy. To achieve this goal, the number density of the blisters and the strength of the alloy under various solid solution treatment (SST) conditions were evaluated. The SST was performed at 470, 490, 510 and 530℃ for 20, 60, 120, 240 and 480 min on the alloy. The number density of the blisters increased with the increasing temperature and time of the SST and the defect area fraction. The yield strength of the alloy after the T6 heat treatment increased with the increasing SST temperature and time. Based on the results, it is suggested that SST should be performed at 510℃ within 60 min. or at 470 and 490℃ within 240 min. to avoid blistering and to improve the strength.

Ti-6Al-4V합금의 열처리가 내식성에 미치는 영향 (The Effect of Heat Treatment on the Corrosion-Resistance for Ti-6Al-4V Alloy)

  • 백신영;나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.453-459
    • /
    • 2003
  • In this study, the effect of heat treatment to the electrochemical polarization resistance for the Ti-6Al-4V alloy was measured. The solution heat treatments were carried out at $1066^{circ}E, 966^{\circ}$E$, followed by aging heat treated $550^{circ}E, 600^{circ}E, and 650^{circ}E$. The electrochemical polarization resistance behavior was measured by potentio-dynamic polarization in the 1N $HNO_3$ + 15ppm HF solution. The obtained results were as follows. 1. As solution heat temperature increased. the corrosion potential was increased, whereas passive current density and critical current density were decreased. 2. As aging heat temperature increased, the corrosion potential was almost constant, but passive current density was decreased 3. The results of composition test measured by EDS at grain boundary and near $\gamma'$ precipitates indicated that S, Cl. and Si which originated from base metal were segregated at the grain boundaries Al and Ti which were the main alloying element in $\gamma'$ were depleted at the $\gamma'$ precipitated. The depletion of Al and Ti in $\gamma'$ was caused to early breakdown of passive film.