• Title/Summary/Keyword: Solution NMR

Search Result 565, Processing Time 0.023 seconds

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF

Solvent Effects on the Isotropic NMR Shifts in Quinuclidine and Pyridine-Type Ligands Coordinated to the Paramagnetic Polyomometalate, $[SiW_{11}Co^{II}o_{39}]^{6-}$

  • Hyun, Jaewon;Park, Suk-Min;So, Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1090-1093
    • /
    • 1997
  • The solvent effects on the isotropic NMR shifts in conformationally rigid ligands such as quinuclidine, pyridine, and 4-aminopyridine coordinated to the paramagnetic polyoxometalate, [SiW11CoⅡO39]6- (SiW11Co), are reported. For these complexes the ligand exchange is slow on the NMR time scale and pure 1H NMR signals have been observed at room temperature. The signals for the SiW11Co complexes are shifted upfield whe dimethyl sulfoxide-d6 (DMSO) is added to a D2O solution. The isotropic shifts are separated into contact and pseudocontact contributions by assuming that the contact shifts are proportional to the isotropic shifts of the same ligands coordinated to [SiW11NiⅡO39]6-. It is shown that both the contact and pseudocontact shifts decrease (the absolute values of the pseudocontact shifts increase), when D2O is replaced by DMSO. It is suggested that D2O, a strong hydrogen bond donor, withdraws electron density from [SiW11CoⅡO39]6-, increasing the acidity of the cobalt ion toward the axial ligand. When D2O is replaced by DMSO, the acidity of the cobalt ion in SiW11Co decreases, weakening the Co-N bond. Then both the contact and pseudocontact shifts are expected to decrease in agreement with the observed solvent effects.

1H-NMR and HPLC analysis on the chiral discrimination of β-blockers using (S)-2-tert-butyl-2-methyl-1,3-benzodioxole-4-carboxylic acid

  • Seo, Sang Hun;Mai, Xuan-Lan;Le, Thi-Anh-Tuyet;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • In the group of commonly prescribed β-blocker drugs, one of the enantiomers is generally relatively more active than the others. This study aims to develop a technique for the chiral analysis of select β-blockers based on proton nuclear magnetic resonance (1H-NMR) spectrometry. (S)-2-Tert-butyl-2-methyl-1,3-benzodioxole-4-carboxylic acid ((S)-TBMB) was synthesized and utilized as a chiral derivatizing agent. Pure β-blocker enantiomers were isolated from racemates by semi-preparative liquid chromatography prior to derivatization. The reaction time and concentration of (S)-TBMB were controlled to improve the derivatization procedure. No racemization was found during the analysis. High-performance liquid chromatography (HPLC) analysis was also performed for comparative purposes. High agreement between the NMR and HPLC methods was achieved in the determination of (R)-metoprolol in a standard solution of the (S) isomer.

Backbone NMR chemical shift assignment for the substrate binding domain of Escherichia coli HscA

  • Jin Hae Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.2
    • /
    • pp.6-9
    • /
    • 2024
  • HscA is a Hsp70-type chaperone protein that plays an essential role to mediate the iron-sulfur (Fe-S) cluster biogenesis mechanism in Escherichia coli. Like other Hsp70 chaperones, HscA is composed of two domains: the nucleotide binding domain (NBD), which can hydrolyze ATP and use its chemical energy to facilitate the Fe-S cluster transfer process, and the substrate binding domain (SBD), which directly interacts with the substrate, IscU, the scaffold protein of an Fe-S cluster. In the present work, we prepared the isolated SBD construct of HscA (HscA(SBD)) and conducted the solution-state nuclear magnetic resonance (NMR) experiments to have its backbone chemical shift assignment information. Due to low spectral quality of HscA(SBD), we obtained all the NMR data from the sample containing the peptide LPPVKIHC, the HscA-interaction motif of IscU, from which the chemical shift assignment could be done successfully. We expect that this information provides an important basis to execute detailed structural characterization of HscA and appreciate its interaction with IscU.

Calculation of NMR Shift in Paramagnetic System When the Threefold Axis is Chosen as the Quantization Axis (Ⅰ). The NMR Shift for a 3d$^1$ System in a Strong Crystal Field of Octahedral Symmetry

  • Ahn, Sang-woon;Park, Euisuh;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.103-114
    • /
    • 1983
  • The NMR shift arising from the electron angular momentum and the electron spin dipolar-nuclear spin angular momentum interaction has been examined for a $3d_1$ system in a strong octahedral crystal field when the threefold axis is chosen as the quantization axis. To investigate the NMR shift in this situation, first, we have extended the evaluation of the hyperfine integrals to any pairs of 3d orbitals adopting a general method which is applicable to a general vector R, pointing in arbitrary direction in space. Secondly, a general expression using a nonmultipole technique is derived for the NMR shift resulting from the electron angular momentum and the electron spin dipolar-nuclear spin angular momentum interactions. From this expression all the multipolar terms are determined. ${\Delta}B/B$ for the $3d_1$ system in this case is compared with that for the 3d1 system when the z axis is chosen as the quantization axis. When we choose the threefold axis as the quantization axis, it is found that along the , and axes, ${\Delta}B/B$ values are significantly different from each other and along the , <-1-1-1>, <-11-1>, , <-1-11>, , and <-111> axes, ${\Delta}B/B$ values are however the same. We also find that the 1/R7 term contributes dominantly to the NMR shift for all values of R. When 1/$R^5$ term is included, there is good agreement between the exact solution and the multipolar terms when $R\; {\leqslant}\;0.35\;nm.$.

The Structural Studies of Peptide P143 Derived from Apo B-100 by NMR

  • Lee, Ji-Eun;Kim, Gil-Hoon;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.4
    • /
    • pp.58-63
    • /
    • 2021
  • Apolipoprotein B-100 (apo B-100), the main protein component that makes up LDL (Low density lipoprotein), consists of 4,536 amino acids and serves to combine with the LDL receptor. The oxidized LDL peptides by malondialdehyde (MDA) or acetylation in vivo act as immunoglobulin (Ig) antigens and peptide groups were classified into 7 peptide groups with subsequent 20 amino acids (P1-P302). The biomimetic peptide P143 (IALDD AKINF NEKLS QLQTY) out of C-group peptides carrying the highest value of IgG antigens were selected for structural studies that may provide antigen specificity. Experimental results show that P143 has β-sheet in Ile[1]-Asn[9] and α-helice in Gln[16]-Tyr[20] structure. Homonuclear 2D-NMR (COSY, TOCSY, NOESY) experiments were carried out for NMR signal assignments and structure determination for P143. On the basis of these completely assigned NMR spectra and proton distance information, distance geometry (DG) and molecular dynamic (MD) were carried out to determine the structures of P143. The proposed structure was selected by comparisons between experimental NOE spectra and back-calculated 2D NOE results from determined structure showing acceptable agreement. The total Root-Mean-Square-Deviation (RMSD) value of P143 obtained upon superposition of all atoms were in the set range. The solution state P143 has a mixed structure of pseudo α-helix and β-turn(Phe[10] to Glu[12]). These results are well consistent with calculated structure from experimental data of NOE spectra. Structural studies based on NMR may contribute to the prevent oxidation studies of atherosclerosis and observed conformational characteristics of apo B-100 in LDL using monoclonal antibodies.