• Title/Summary/Keyword: Solute

Search Result 686, Processing Time 0.027 seconds

Reactive Extraction of Organic Acid with Amine Extractant, I. (A Study on the Effects of Extractant and Solvent on the Degree of Extraction in Reactive Extraction of Organic Acid) (아민 추출제에 의한 유기산의 반응추출(I) (유기산의 반응추출시 추출도에 미치는 추출제 및 용매의 영향에 관한 연구))

  • Ryu, Oon-Hyung;Lee, Han-Seob;Yoo, Chul-Hwi;Kim, Yong-Yeul;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.203-213
    • /
    • 1996
  • In physical and reactive extraction system using equilibrium extraction equipment, the effects of extractants, concentration of extractant, and solvent on the degree of extraction were investigated. The organic acids used were acrylic acid and metacrylic acid. Extractants were n-octylamine(OA), di-n-octylamine(DOA), tri-n-octylamine(TOA) and tri-octylmetyl ammonium chloride(TOMAC ; Aliquat 336). We found that the degree of extraction for reactive extraction was 2~9 times than that for physical extraction and that effect of extractants on the degree of extraction of organic acid was the order of OA

  • PDF

Adsorption-Desorption Modeling of Pollutants on Granular Activated Carbon (오염물질에 대한 입상 활성탄의 흡·탈착 모델링)

  • Wang, Chang Keun;Weber, Walter J. Jr.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.279-285
    • /
    • 1993
  • It is important to understand the interrelationship between adsorption, equilibrium and mass transport in efficient design and operation of the granular activated carbon(GAC) adsorption systems. In this study, the micro-diameter-depth adsorption system(MIDDAS) technique was developed to estimate equilibrium and mass transport parameters, which were utilized to simulate adsorption and mass transport phenomena dynamically and mathematically. The homogeneous surface diffusion model(HSDM) utilizing the estimated equilibrium and mass transport parameters including the film transfer coefficients and surface diffusivities from the MIDDAS technique, successfully predicted competitive adsorption, desorption and chromatographic displacement effects. In the binary solute system of p-chlorophenol(PCP) and p-nitrophenol(PNP), PCP was displaced by PNP and the HSDM could predict successfully. While the HSDM described the desorption breakthrough curves for PCP, PNP and PTS well when complete reversible adsorption was assumed, the desorption breakthrough curves for DBS could be predicted after subsequent incorporation of the degree of irreversibility into the model simulations.

  • PDF

Comparison of Water Relations of Three Cultivated Pleurotus Species and Trichoderma Green Moulds

  • Lee, Hyang-Burm;Naresh Magan;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • The effect of ionic osmotic potential (Ψ$\pi$), and matric potential (Ψm) in the range of -0.2 to -4.0 Mpa on mycelial growth of three species of Pleurotus (P.florida, P.ostrenatus and P.safor-caju) were determined over a range of temperature (15-3$0^{\circ}C$) on a 2% malt extract agar medium and compared with the Ψ$\pi$ effect on growth of two strains of Trichoderma green mould. With the ionic solute KCl, optimun Ψ$\pi$for growth was -0.2 MPa for P.floreda and in the range of -0.2 to -0.5 MPa, with slight growth at -3.0 MPa and with nogrowth at -4.0 MPa. Of the species of Pleurotus, P.florida grew signigicantly slower than the other two species. Growt of the species of Pleurocus was significantly slower when water potential (Ψ$\omega$) was modified matrically with polyethylene glycol (PEG) 8000 then osmotically with KCl. They were also more sensitive to changes in Ψm than Ψ$\pi$The optimum Ψm of the Pleurotus was -0.5 Ψm, with no growth below -3.0 MPa. Of the species of Pleurotus, P.florida was most sensitive and P.sajor-caju was more tolerent to lowered Ψ$\pi$,but P.sajor-caju was most sensitive to lowered Ψm. The growth rate of the Trichoderma green mould strains was much faster than that observed for the Pleurotus spp. Optimum growth for bot strains of Trichoderma was in the range of -0.2 to -0.5 MPa. Strain CNU 503 was more tolerant to water stress than strain CNU 501. Both strains were able to grow up to 30% of optimum growth at -4.0 MPa at 25-3$0^{\circ}C$.

  • PDF

Effect of Toluene Added to Casting Solution on Characteristic of Phase Inversion Polysulfone Membrane (상전환 공정에 의한 폴리설폰막의 제조에 있어 제막용액에 첨가된 톨루엔의 영향)

  • Choi, Seung-Rag;Park, So-Jin;Seo, Bum-Kyoung;Lee, Kune Woo;Han, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.633-639
    • /
    • 2008
  • Polysulfone membranes were prepared via the phase inversion process. Toluene was added as a nonsolvent additive in the casting solution containing a mixture of polysulfone and n-methylpyrrolidone. When prepared via the diffusion-induced process using isopropanol as a precipitation nonsolvent, the solidified membranes revealed a similar asymmetric structure irrespective of the addition of toluene, presenting both a dense skin layer and a sponge-like support layer. The added toluene played a role of enhancing liquid-liquid phase separation of the casting solution, and skin layer thickness of a prepared membrane increased with toluene content in the casting solution. On membrane performance, the solute rejection showed a uniform behavior irrespective of the addition of toluene. However, in spite of the significant increase in dense skin layer thickness, the water permeation through the membrane prepared with 60 wt% toluene revealed five times as much flux, compared with that of the membrane prepared without toluene additive.

Measurement of Lattice Parameter of Primary Si crystal in Rheocast Hypereutectic Al-Si Alloy by Convergent Beam Electron Diffraction Technique (수렴성빔 전자회절법을 이용한 리오캐스팅시킨 과공정 Al-Si합금에서 실리콘초정의 격자상수 측정)

  • Lee, Jung-Ill;Kim, Gyeung-Ho;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • The morphological changes of primary solid particles as a function of process time on hypereutectic Al-15.5wt%Si alloy during semi-solid state processing with a shear rate of $200s^{-1}$ are studied. In this alloy, it was observed that primary Si crystals are fragmented at the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. To understand the role of Al dissolved in the primary Si crystal by shear stress at high temperature, lattice parameters of the primary Si crystals are determined as a variation of high order Laue zone(HOLZ) line positions measured from convergent beam electron diffraction(CBED) pattern. The lattice parameter of the primary Si crystal in the rheocast Al-15.5wt%Si alloy shows tensile strain of about 5 times greater than that of the gravity casting. Increase of the lattice parameter by rheocasting is due to the increased amount of Al dissolved in the primary Si crystal accelerated by shear stress at high temperature. The amounts of solute Al in the primary Si crystal are measured quantitatively by EPMA method to confirm the CBED analysis.

  • PDF

Microstructural Characteristics of 800 MPa Grade High Strength Steel Weld Metals (800 MPa급 고강도강 용접금속의 미세조직 특성 비교 연구)

  • Lee, Jae-Hee;Kim, Sang-Hoon;Yoon, Byung-Hyun;Kim, Hwan-Tae;Kil, Sang-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Microstructural characteristics of two high strength (600 MPa & 800 MPa) weld metals produced by flux-cored arc welding process (FCAW) were evaluated. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at relatively high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 85% acicular ferrite and 15% low temperature forming phases (bainite, martensite). The prior austenite grain size of 800 MPa grade weld metal was decreased by solute drag force. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by a transmission electron microscopy (TEM). In both 600 MPa and 800MPa grade weld metals, the inclusions were mainly consisted of Ti-oxide and Mn-oxide, and the average size of inclusions was $0.7{\mu}m$. The 800 MPa grade weld metal exhibited higher tensile strength and similar toughness compared with the 600 MPa grade weld metal. This result is mainly due to a higher fraction of low temperature products and a lower fraction of grain boundary ferrite in the 800 MPa grade weld metal.

Competitve Interactions of Cadmium with Magnesium in Three Different Soil Constituents (3개의 다른 토양에서의 카드늄과 마그네시움의 경쟁적 상호작용)

  • Doug-Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • To study the Cd adsorption in the presence of competing ions in soil-solution interphase, three soil samples from the Bt horizon were taken and analyzed for their physical and chemical properties. Adsorption of ethylene glycol monoethyl ether(EGME) and N, were determined to establish the specific surface area of the soils. We attempted to establish a qeneralizing competitive sorption isotherms for soils of entirely different composition of the solid phase, resulting in the routine use as a guidelines for the fate of reactive solute in soil profiles. Many physicochemical factors including competitive adsorption bettween solutes will affect the general adsorption phenomena as shown in a single not only on the soil:solution ratio used, but also on the surface areas of its respective soil samples. This phenomenon was attributed to competition Cd for sorption sites with Mg by different soil constituents. These adsorption isotherms are able to use as examples to demonstrate that this phenomenon can complicate the development of a standardized batch adsorption procedure as well as interpreting fate and adsorption of toxic inorganic compounds.

  • PDF

Comparison of Particle-Size Distribution Models for Estimating Water Retention Characteristic (토양수분특성 추정을 위한 입자크기분포 모형들의 비교)

  • 황상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-114
    • /
    • 2002
  • Knowledge of soil water retention characteristic is essential for many problems involving water flow and organic solute transport in unsaturated soils. A physico-empirical approach based on the translation of the particle-size distribution (PSD) into a corresponding water retention curve has been accomplished by others using the concept that the pore-size distribution is directly related to PSD. This approach implies that details of a PSD curve may affect the estimation of water retention characteristic (WRC). To determine whether the WRC estimation using the Arya-Paris model could be affected by the selection of a PSD model, four PSD models with one to four fitting parameters were used. The Jaky model with only one fitting parameter had greater WRC estimation ability than other models with greater number of fitting parameters. The better performance of the Jaky model may be explained by the effect of soil structure in field soils.

Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions (중공사막 모듈을 이용한 정삼투 공정에서의 운영조건 변화에 따른 성능평가)

  • Kim, Bongchul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.357-361
    • /
    • 2018
  • Forward osmosis (FO) process has been attracting attention for its potential applications such as industrial wastewater treatment, wastewater reclamation and seawater desalination. Particularly, in terms of fouling reversibility and operating energy consumption, the FO process is assumed to be preferable to the reverse osmosis (RO) process. Despite these advantages, there is a difficulty in the empirical step due to the lack of separation and recovery techniques of the draw solution. Therefore, rather than using FO alone, recent developments of the FO process have adapted a hybrid system without draw solution separation/recovery systems, such as the FO-RO osmotic dilution system. In this study, we investigated the performance of the hollow fiber FO module according to various operating conditions. The change of permeate flow rate according to the flow rates of the draw and feed solutions in the process operation is a factor that increases the permeate flow rate, one of the performance factors in the positive osmosis process. Our results reveal that flow rates of draw and feed solutions affect the membrane performance, such as the water flux and the reverse solute flux. Moreover, use of hydraulic pressure on the feed side was shown to yield slightly higher flux than the case without applied pressure. Thus, optimizing the operating conditions is important in the hollow fiber FO system.

Preparation and Properties of PVP (poly-4-vinylphenol) Gate Insulation Film For Organic Thin Film Transistor (유기박막 트랜지스터용 PVP (poly-4-vinylphenol) 게이트 절연막의 제작과 특성)

  • Baek, In-Jae;Yoo, Jae-Hyouk;Lim, Hun-Seung;Chang, Ho-Jung;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.359-363
    • /
    • 2005
  • The organic insulation devices with MIM (metal-insulator-metal) structures as PVP gate insulation films were prepared for the application of organic thin film transistors (OTFT). The co-polymer organic insulation films were synthesized by using PVP(poly-4-vinylphenol) as solute and PGMEA (propylene glycol monomethyl ether acetate) as solvent. The cross-linked PVP insulation films were also prepared by addition of poly (melamine-co-formaldehyde) as thermal hardener. The leakage current of the cross-linked PVP films was found to be about 300 pA with low current noise. and showed better property in electrical properties as compared with the co-polymer PVP insulation films. In addition, cross-linked PVP insulation films showed better surface morphology (roughness), showing about 0.11${\~}$0.18 nF in capacitance for all PVP film samples.

  • PDF