• Title/Summary/Keyword: Soluble TRAIL

Search Result 6, Processing Time 0.017 seconds

Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand

  • Do, Bich Hang;Nguyen, Minh Tan;Song, Jung-A;Park, Sangsu;Yoo, Jiwon;Jang, Jaepyeong;Lee, Sunju;So, Seoungjun;Yoon, Yejin;Kim, Inki;Lee, Kyungjin;Jang, Yeon Jin;Choe, Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2156-2164
    • /
    • 2017
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli. In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was $0.4EU/{\mu}g$, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an $EC_{50}$ and Hill coefficient of $0.6{{\pm}}0.03nM$ and $2.41{\pm}0.15$, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.

Increased Serum S-TRAIL Level in Newly Diagnosed Stage-IV Lung Adenocarcinoma but not Squamous Cell Carcinoma is Correlated with Age and Smoking

  • Kargi, Aysegul;Bisgin, Atil;Yalcin, Arzu Didem;Kargi, Ahmet Bulent;Sahin, Emel;Gumuslu, Saadet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4819-4822
    • /
    • 2013
  • Background: Lung cancer is the leading cause of cancer mortality in the world. Many factors can protect against or facilitate its development. A TNF family member TRAIL, has a complex physiological role beyond that of merely activating the apoptotic pathway in cancer cells. Vitamin D is converted to its active form locally in the lung, and is also thought to play an important role in lung health. Our goal was to investigate the possible clinical significance of serum sTRAIL and 1,25-dihydroxyvitamin D(3) levels in patients with non-small cell lung cancer (NSCLC). Materials and Methods: Totals of 18 consecutive adenocarcinoma and 22 squamous cell carcinoma patients with stage-IV non-small cell lung cancer referred to our institute were included in this study. There were 12 men and 6 women, with ages ranging from 38 to 97 (mean 60.5) years with adenocarcinoma, and 20 men and 2 women, with ages ranging from 46 to 80 (mean 65) years with squamous cell carcinoma. Serum levels of sTRAIL and 1,25-dihydroxyvitamin D(3) were measured in all samples at the time of diagnosis. Results: sTRAIL levels in NSCLC patients were higher than in the control group. Although there was no correlation between patient survival and sTRAIL levels, the highest sTRAIL levels were correlated with age and cigarette smoking in the adenocarcinoma patients. sTRAIL level in healthy individuals were correlated with serum 1,25-dihydroxyvitamin D(3). Conclusions: Serum sTRAIL concentrations were increased in NSCLC patients, and correlated with age and smoking history, but not with overall survival.

Effects of TNF Secreting HEK Cells on B Lymphocytes' Apoptosis in Human Chronic Lymphocytic Leukemias

  • Valizadeh, Armita;Ahmadzadeh, Ahmad;Teimoori, Ali;Khodadadi, Ali;Saki, Ghasem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9885-9889
    • /
    • 2014
  • Background: Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) is an antitumor candidate in cancer therapy. This study focused on effects of TRAIL, as a proapototic ligand that causes apoptosis, in B-CELL chronic lymphocytic leukemia cells (B-CLL). Materials and Methods: A population of HEK 293 cells was transducted by lentivirus that these achieved ability for producing the TRAIL protein and then HEK 293 cells transducted were placed in the vicinity of CLL cells. After 24 hours of co-culture, apoptosis of CLL cells was assessed by annexin V staining. Results: The amount of Apoptosis was examined separately in four groups: 293 HEK TRAIL ($16.17{\pm}1.04%$); 293 HEK GFP ($2.7{\pm}0.57%$); WT 293 HEK ($2{\pm}2.6%$); and CLL cells ($0.01{\pm}0.01%$). Among the groups studied, the maximum amount of apoptosis was in the group that the vector encoding TRAIL was transducted. In this group, the mean level of soluble TRAIL in the culture medium was 253pg/ml; also flow cytometry analyzes showed that proapotosis in this group was $32.8{\pm}1.6%$, which was higher than the other groups. Conclusions: In this study, we have demonstrated that TNF secreted from HEK 293 cells are effective in death of CLL cells.

Role of Tumor Necrosis Factor-Producing Mesenchymal Stem Cells on Apoptosis of Chronic B-lymphocytic Tumor Cells Resistant to Fludarabine-based Chemotherapy

  • Valizadeh, Armita;Ahmadzadeh, Ahmad;Saki, Ghasem;Khodadadi, Ali;Teimoori, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8533-8539
    • /
    • 2016
  • Background: B-cell chronic lymphocytic leukemia B (B-CLL), the most common type of leukemia, may be caused by apoptosis deficiency in the body. Adipose tissue-derived mesenchymal stem cells (AD-MSCs) as providers of pro-apoptotic molecules such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), can be considered as an effective anti-cancer therapy candidate. Therefore, in this study we assessed the role of tumor necrosis factor-producing mesenchymal stem cells oin apoptosis of B-CLL cells resistant to fludarabine-based chemotherapy. Materials and Methods: In this study, after isolation and culture of AD-MSCs, a lentiviral LeGO-iG2-TRAIL-GFP vector containing a gene producing the ligand pro-apoptotic with plasmid PsPAX2 and PMDG2 virus were transfected into cell-lines to generate T293HEK. Then, T293HEK cell supernatant containing the virus produced after 48 and 72 hours was collected, and these viruses were transduced to reprogram AD-MSCs. Apoptosis rates were separately studied in four groups: group 1, AD-MSCs-TRAIL; group 2, AD-MSCs-GFP; group 3, AD-MSCs; and group 4, CLL. Results: Observed apoptosis rates were: group 1, $42{\pm}1.04%$; group 2, $21{\pm}0.57%$; group 3, $19{\pm}2.6%$; and group 4, % $0.01{\pm}0.01$. The highest rate of apoptosis thus occurred ingroup 1 (transduced TRAIL encoding vector). In this group, the average medium-soluble TRAIL was 72.7pg/m and flow cytometry analysis showed a pro-apoptosis rate of $63{\pm}1.6%$, which was again higher than in other groups. Conclusions: In this study we have shown that tumor necrosis factor (TNF) secreted by AD-MSCs may play an effective role in inducing B-CLL cell apoptosis.

The development of anti-DR4 single-chain Fv (ScFv) antibody fused to Escherichia coli alkaline phosphatase (대장균의 alkaline phosphatase가 융합된 anti-DR4 single-chain Fv (ScFv) 항체의 개발)

  • Han, Seung Hee;Kim, Jin-Kyoo
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • Enzyme immunoassay to analyze specific binding activity of antibody to antigen uses horseradish peroxidase (HRP) or alkaline phosphatase (AP). Chemical methods are usually used for coupling of these enzymes to antibody, which is complicated and random cross-linking process. As results, it causes decreases or loss of functional activity of either antibody or enzyme. In addition, most enzyme assays use secondary antibody to detect antigen binding activity of primary antibody. Enzymes coupled to secondary antibody provide a binding signal by substrate-based color development, suggesting secondary antibody is required in enzyme immunoassay. Additional incubation time for binding of secondary antibody should also be necessary. More importantly, non-specific binding activity caused by secondary antibody should also be eliminated. In this study, we cloned AP isolated from Escherichia coli (E. coli) chromosome by PCR and fused to) hAY4 single-chain variable domain fragment (ScFv) specific to death receptor (DR4) which is a receptor for tumor necrosis factor ${\alpha}$ related apoptosis induced ligand (TRAIL). hAY4 ScFv-AP expressed in E. coli showed 73.8 kDa as a monomer in SDS-PAGE. However, this fusion protein shown in size-exclusion chromatography (SEC) exhibited 147.6 kDa as a dimer confirming that natural dimerization of AP by non-covalent association induced ScFv-AP dimerization. In several immunoassay such as ELISA, Western blot and immunocytochemistry, it showed antigen binding activity by color development of substrates catalyzed by AP directly fused to primary hAY4 ScFv without secondary antibody. In summary, hAY4 ScFv-AP fusion protein was successfully purified as a soluble dimeric form in E. coli and showed antigen binding activity in several immunoassays without addition of secondary antibody which sometimes causes time-consuming, expensive and non-specific false binding.

The development of anti-DR4 single-chain Fv (ScFv) antibody fused to Streptavidin (Streptavidin이 융합된 DR4 항원에 특이적인 single-chain Fv 항체의 개발)

  • Kim, Seo Woo;Wu, Sangwook;Kim, Jin-Kyoo
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.330-342
    • /
    • 2018
  • The Streptavidin and Biotin system has been studied most extensively as the high affinity non-covalent binding of Biotin to STR ($K_D=10^{-14}M$) and four Biotin binding sites in tetrameric Streptavidin makes this system useful for the production of multivalent antibody. For the application of this system, we cloned Streptavidin amplified from Streptomyces avidinii chromosome by PCR and fused to gene of hAY4 single-chain Fv antibody specific to death receptor 4 (DR4) which is a receptor for tumor necrosis factor ${\alpha}$ related apoptosis induced ligand. The hAY4 single-chain Fv antibody fused to Streptavidin expressed in Escherichia coli showed 43 kDa monomer in heated SDS-PAGE. However, this fusion protein shown in both non-heated SDS-PAGE and Size-exclusion chromatography exhibited 172 kDa as a tetramer suggesting that natural tetramerization of Streptavidin by non-covalent association induced hAY4 single-chain Fv tetramerization. This fusion protein retained a Biotin binding activity similar to natural Streptavidin as shown in Ouchterlony assay and ELISA. Death receptor 4 antigen binding activity of purified hAY4 single-chain Fv fused to Streptavidin was also confirmed by ELISA and Westernblot. In addition, surface plasmon resonance analysis showed 60-fold higher antigen binding affinity of the hAY4-STR than monomeric hAY4 ScFv due to tetramerization. In summary, hAY4 single-chain Fv fused to Streptavidin fusion protein was successfully expressed and purified as a soluble tetramer in E. coli and showed both Biotin and DR4 antigen binding activity suggesting possible production of bifunctional and tetrameric ScFv antibody.