• 제목/요약/키워드: Soluble Microbial Products (SMP)

검색결과 11건 처리시간 0.024초

MBR공정에서 내부 반송비에 따른 생물대사성분의 거동 (Behavior of Soluble Microbial Products by the Internal Recycle Rate in MBR Process)

  • 이원배;차기철;정태영;김동진;유익근
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.602-608
    • /
    • 2005
  • A laboratory-scale experiment was conducted to investigate control of soluble microbial products (SMP) by the internal recycle rate in the submerged membrane separation activated sludge process. The internal recycle rate of the reactor RUN 1 and RUN 2 were 100 % and 200 %, respectively. SMP concentration was rapidly accumulated in the reactor (RUN 1). The variation of accumulated SMP concentration was related to the denitrification rate at the beginning experiment however SMP concentration decreased without correlatively to the denitrification rate during long operation time. The microbial kinetic model was rapidly presented in the both microbial growth and extinction in the reactor (RUN 1). In the SMP kinetic model, Internal recycle rate is the lower, value of UAP and BAP which SMP matter were presented low. The study about development of kinetic model is relatively well adjusted to the experiment exception SMP. In the future, SMP formation equation must be thought that continually research is necessary.

Nitrogen Removal and Behavior of Soluble Microbial Products (SMP) in the MBR Process with Intermittent Aerobic Condition

  • Cha, Gi-Cheol;Myoung Hwang
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2001
  • A lab-scale submerged membrane bio-reactor (MBR) with intermittent aeration was carried out for investigating the behavior of soluble microbial products (SMP). The SMP concentration of mixed liquor at Run 1 accumulated immediately at the end of running and biodegradable SMP converted into non-biodegradable SMP, but it did not occurred at the Run 2 and 3. The SMP formation coefficient (k) at the anoxic phase was a little higher than oxic phase, and the lowest k was investigated at Run 3. The combination of biological denitrification with the MBR Process was advantageous in the prevention of membrane bio-fouling.

  • PDF

회분여과 방식을 통한 생물대사산물의 분자량 분포 특성 평가 (Valuation of Molecular Weight Distribution Charteristics of Soluble Microbial Products(SMP) Using the Batch Filtration Test)

  • 정태영;차기철;이영무;한상국
    • 멤브레인
    • /
    • 제12권1호
    • /
    • pp.21-27
    • /
    • 2002
  • 본 연구에서는 회분여과방식을 이용하여 부하율에 따라 생성되는 생물대사성분의 특성 및 분포를 관찰하였다. 실험에 사용된 기질은 단일 탄소인 phenol을 사용하였으며, 분자량 분포실험을 위하여 분자량이 각각 30K, 100K Dalton 및 $0.45{\mu}$ membrane filter를 이용하여 구하였다. 페놀농도가 120, 230 및 440 mg/L 일 때 비기질이용율(q)은 각각 0.639, 1.281, 1.744 (mgTOC/mg MLSS/day)로 나타났으며 Run C일 때 가장 높은 이용율을 나타냈다 . 내생단계에서 미생물의 사멸율($K_d$)는 각각 0.0536, 0.0661, 0.0749($day^1$)이며 생성계수 ($SMP_e$) 는 각각 0.006, 0.0058, 0.0057($day^1$)로 나타났다. 초기 유입된 기질이 기질분해에 의해 생성된 $SMP_s$로 분해되어지며, 시간경과에 따라 $SMP_{nd}$ 로 진행됨을 알수 있었다. 기질분해 완료 후 미생물의 내생단계에 접어들면서 $SMP_e$성분으로 전환되었다. 유입부하율에 따른 분자량 분포 측정결과는 운전시간이 경고함에 따라 점차 저분자 물질이 고분자의 난분해성 물질로 전환되었다.

Effect of solids retention time on membrane fouling in membrane bioreactors at a constant mixed liquor suspended solids concentration

  • Hao, L.;Liss, S.N.;Liao, B.Q.
    • Membrane and Water Treatment
    • /
    • 제8권4호
    • /
    • pp.337-353
    • /
    • 2017
  • Membrane fouling at different solids retention times (SRT) (7, 12 and 20 days) was studied under well-controlled conditions in a laboratory-scale aerobic submerged membrane bioreactor under constant biomass concentration using a synthetic high strength wastewater. An increase in SRT was found to improve membrane performance and this correlated to changes in the total production of bound extracellular polymeric substances (EPS), and the composition and properties of bound EPS using X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR) and floc sizes. A larger amount of total bound EPS was found at the lowest SRT (7 days) tested but the ratio of proteins (PN) to carbohydrates (CH) in bound EPS increased with an increase in SRT. Similarly, the quantity of soluble microbial products (SMP) decreased with an increase in SRT and the SMP PN/CH ratio increased with an increase in SRT. SMP concentrations positively correlated to the percentage of membrane pore blocking resistance. The quantity of total bound EPS and total SMP positively corresponded to the membrane fouling rate, while the PN/CH ratio in the bound EPS and SMP negatively correlated to the membrane fouling rate. The results show that both the quantity and composition of bound EPS and SMP and floc sizes are important in controlling membrane fouling.

침지형 막분리 활성오니법에 있어서 생물대사성분의 거동 (Behavior of Soluble Microbial Products in a Submerged Membrane Separation Activated Sludge Process)

  • 차기철;이동열;심진기;이영무;유익근;안승호
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.959-970
    • /
    • 2000
  • 본 연구는 실험실 규모의 침지형 막분리 활성오니법을 이용하여 생물 대사 성분이 막투과 유속에 미치는 영향에 대해 고찰하였다. SMP와 분리막의 fouling과의 관계를 살펴보기 위해 연속 실험과 회분 실험으로 나누어 운전하였다. 합성 폐수로는 단일 탄소원으로서 phenol을 사용하였다. 생물 반응조의 체류 시간과 MLSS농도는 각각 12hr과 9.000mgVSS/L로 유지하였다. 연속 장치에 있어서 회분 여과 실험을 통해 SMP농도가 증가할수록 막투과 유속은 감소하였고, cake와 gel층이 형성을 증가시켰다. Cake의 저항은 $2.9{\sim}4.0{\times}10^{10}$으로 측정되어 다른 여과 저항보다 막투과 유속의 감소에 중요한 영향을 나타냈다. 회분 페놀 분해 실험에서 SMP종들 중에 $SMP_{nd}$$SMP_{e}$가 난분해성 고분자 물질로서 막투과 감소에 중요한 역할을 하였다. 또한, SMP농도는 막투과 유속의 감소에 대한 HRT의 증가로서 생물 반응조 내에 축적되었다.

  • PDF

Relation between sludge properties and filterability in MBR: Under infinite SRT

  • Zhang, Haifeng;Wang, Bing;Yu, Haihuan;Zhang, Lanhe;Song, Lianfa
    • Membrane and Water Treatment
    • /
    • 제6권6호
    • /
    • pp.501-512
    • /
    • 2015
  • A laboratory-scale submerged membrane bioreactor (MBR) was continuously operated for 100 d at an infinite sludge retention time (SRT) with the aim of identifying possible relation between the filterability of mixed liquor and sludge properties, such as extracellular polymeric substances (EPS), soluble microbial products (SMP), viscosity of mixed liquor, zeta potential of flocs and particle size distributions (PSD). Research results confirmed that MBR can operate with a complete sludge retention ensuring good treatment performances for COD and $NH_3-N$. However, the long term operation (about 40 d) of MBR with no sludge discharge had a negative influence on sludge filterability, and an increase in membrane fouling rates with the time was observed. There as a strong correlation between the sludge filterability and the fouling rate. Among the different sludge properties parameters, the concentration SMP and EPS had a more closely correlation with the sludge filterability. The concentrations of SMP, especially SMP with MW above 10 kDa, had a strong direct correlation to the filterability of mixed sludge. The protein fractions in EPS were biodegradable and available for microorganism metabolism after about 60 days, and the carbohydrates in EPS had a significantly negative effect on sludge filterability in MBR at an infinite SRT.

제올라이트를 첨가한 질산화 탈질공정에서 응집과 UF공정을 이용한 처리수내 용존 유기물질 제거 연구 (Study on Removal of DOC for Effluent from Nitrification and Denitrification Process with Zeolite by Combined Process of Coagulation and UF Membrane)

  • 한장혁;윤태일;조경철;송재용
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.537-546
    • /
    • 2005
  • This study was carried out to evaluate EPS and SMP variation of sludge and effluent in nitrification and denitrification process with zeolite addition, a possible reduction of effluent DOC by URC(Ultra Rapid Coagulation) process. As a biological wastewater treatment result, EPS formation of both aeration and anoxic sludges are not affect by SRT variation. However, EPS concentration of sludges is higher in aeration tank than in anoxic tank by 6~8 mg EPS/ g VSS. Linear relationship between SMP to DOC indicates that SMP of bulk solution contributes to most of the biological treatment effluent DOC. DOC and turbidity removal efficiency was more improved with URC process than in a conventional coagulation. For pretreatment of UF filtration DOC removal was advanced by URC process than only UF filtration.

Direct membrane filtration of wastewater under very short hydraulic retention time

  • Yoon, Seong-Hoon
    • Advances in environmental research
    • /
    • 제7권1호
    • /
    • pp.39-52
    • /
    • 2018
  • Direct membrane filtration (DMF) of wastewater has many advantages over conventional biological wastewater treatment processes. DMF is not only compact, but potentially energy efficient due to the lack of biological aeration. It also produces more biosolids that can be used to produce methane gas through anaerobic digestion. Most of ammoniacal nitrogen in wastewater is preserved in effluent and is used as fertilizer when effluent is recycled for irrigation. In this study, a technical feasibility of DMF was explored. Organic and nitrogen removal efficiencies were compared between DMF and membrane bioreactor (MBR). Despite the extremely high F/V ratio, e.g., $14.4kg\;COD/m^3/d$, DMF provided very high COD removal efficiencies at ~93%. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) were less in DMF sludge, but membrane fouling rate was far greater than in MBR. The diversity of microbial community in DMF appeared very narrow based on the morphological observation using optical microscope. On the contrary, highly diverse microbial community was observed in the MBR. Microorganisms tended to form jelly globs and attach on reactor wall in DMF. FT-IR study revealed that the biological globs were structurally supported by feather-like materials made of secondary amines. Confocal laser scanning microscopy (CLSM) study showed microorganisms mainly resided on the external surface of microbial globs rather than the internal spaces.

Investigation of influence of temperature and solid retention time on membrane fouling in MBR

  • Mirzavandi, Atoosa;Hazrati, Hossein;Ebrahimi, Sirous
    • Membrane and Water Treatment
    • /
    • 제10권2호
    • /
    • pp.179-189
    • /
    • 2019
  • This study aimed to investigate the effect of temperature and solid retention time (SRT) on membrane fouling in a membrane bioreactors (MBRs). For this purpose, a lab-scale submerged MBR system was used. This system operated at two SRTs of 15 and 5 days, three various temperatures (20, 25 and $30^{\circ}C$) and hydraulic retention time (HRT) of 8 h. The results indicated that decreased the cake layer resistance and increased particles size of foulant due to increasing temperature and SRT. Fourier transform infrared (FTIR) analysis show that the cake layer formed on the membrane surface, contained high levels of proteins and especially polysaccharides in extracellular polymeric substances (EPS) but absorbance intensity of EPS functional groups decreased with temperature and SRT. EEM analysis showed that the peak on the range of Ex/Em=220-240/350-400 in SRT of 15 and temperature of $30^{\circ}C$ indicates the presence of fulvic acid in the cake. In addition, as the temperature rise from 20 to $30^{\circ}C$, concentration of soluble microbial products (SMP) increased and COD removal reached 89%. Furthermore, the rate of membrane fouling was found to increase with decreasing temperature and SRT.