• 제목/요약/키워드: Soliton solution

검색결과 15건 처리시간 0.024초

APPLICATIONS OF THE WEIGHTED SCHEME FOR GNLS EQUATIONS IN SOLVING SOLITON SOLUTIONS

  • Zhang, Tiande;Cao, Qingjie;Price, G.W.;Djidjeli, K.;Twizell, E.H.
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.615-632
    • /
    • 1998
  • Soliton solutions of a class of generalized nonlinear evo-lution equations are discussed analytically and numerically which is achieved using a travelling wave method to formulate one-soliton solution and the finite difference method to the numerical dolutions and the interactions between the solitons for the generalized nonlinear Schrodinger equations. The characteristic behavior of the nonlinear-ity admitted in the system has been investigated and the soliton state of the system in the limit of $\alpha\;\longrightarrow\;0$ and $\alpha\;\longrightarrow\;\infty$ has been studied. The results presented show that soliton phenomena are character-istics associated with the nonlinearities of the dynamical systems.

SASAKIAN 3-METRIC AS A *-CONFORMAL RICCI SOLITON REPRESENTS A BERGER SPHERE

  • Dey, Dibakar
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.101-110
    • /
    • 2022
  • In this article, the notion of *-conformal Ricci soliton is defined as a self similar solution of the *-conformal Ricci flow. A Sasakian 3-metric satisfying the *-conformal Ricci soliton is completely classified under certain conditions on the soliton vector field. We establish a relation with Fano manifolds and proves a homothety between the Sasakian 3-metric and the Berger Sphere. Also, the potential vector field V is a harmonic infinitesimal automorphism of the contact metric structure.

RICCI 𝜌-SOLITONS ON 3-DIMENSIONAL 𝜂-EINSTEIN ALMOST KENMOTSU MANIFOLDS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.613-623
    • /
    • 2020
  • The notion of quasi-Einstein metric in theoretical physics and in relation with string theory is equivalent to the notion of Ricci soliton in differential geometry. Quasi-Einstein metrics or Ricci solitons serve also as solution to Ricci flow equation, which is an evolution equation for Riemannian metrics on a Riemannian manifold. Quasi-Einstein metrics are subject of great interest in both mathematics and theoretical physics. In this paper the notion of Ricci 𝜌-soliton as a generalization of Ricci soliton is defined. We are motivated by the Ricci-Bourguignon flow to define this concept. We show that if a 3-dimensional almost Kenmotsu Einstein manifold M is a 𝜌-soliton, then M is a Kenmotsu manifold of constant sectional curvature -1 and the 𝜌-soliton is expanding with λ = 2.

A PARAMETRIC SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.45-57
    • /
    • 2001
  • A parametric scheme is proposed for the numerical solution of the nonlinear Boussinesq equation. The numerical method is developed by approximating the time and the space partical derivatives by finite-difference re placements and the nonlinear term by an appropriate linearized scheme. The resulting finite-difference method is analyzed for local truncation error and stability. The results of a number of numerical experiments are given for both the single and the double-soliton wave. AMS Mathematics Subject Classification : 65J15, 47H17, 49D15.

A PREDICTOR-CORRECTOR SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Ismail, M.S.;Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.11-27
    • /
    • 2003
  • A fourth order in time and second order in space scheme using a finite-difference method is developed for the non-linear Boussinesq equation. For the solution of the resulting non-linear system a predictor-corrector pair is proposed. The method is analyzed for local truncation error and stability. The results of a number of numerical experiments for both the single and the double-soliton waves are given.

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

CONFORMABLE FRACTIONAL SENSE OF FOAM DRAINAGE EQUATION AND CONSTRUCTION OF ITS SOLUTIONS

  • DARVISHI, MOHAMMAD T.;NAJAFI, MOHAMMAD;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권3호
    • /
    • pp.132-148
    • /
    • 2021
  • The modified F-expansion method is used to construct analytical solutions of the foam drainage equation with time- and space-fractional derivatives. The conformable derivatives are considered as spacial and temporal ones. As a result, some analytical exact solutions including kink, bright-dark soliton, periodic and rational solutions are obtained.

A Coupled Higher-Order Nonlinear $Schr{\ddot{o}}dinger$ Equation Including Higher-Order Bright and Dark Solitons

  • Kim, Jong-Bae
    • ETRI Journal
    • /
    • 제23권1호
    • /
    • pp.9-15
    • /
    • 2001
  • We suggest a generalized Lax pair on a Hermitian symmetric space to generate a new coupled higher-order nonlinear $Schr{\ddot{o}}dinger$ equation of a dual type which contains both bright and dark soliton equations depending on parameters in the Lax pair. Through the generalized ways of reduction and the scaling transformation for the coupled higher-order nonlinear $Schr{\ddot{o}}dinger$ equation, two integrable types of higher-order dark soliton equations and their extensions to vector equations are newly derived in addition to the corresponding equations of the known higher-order bright solitons. Analytical discussion on a general scalar solution of the higher-order dark soliton equation is then made in detail.

  • PDF

Three-dimensional Spatiotemporal Accessible Solitons in a PT-symmetric Potential

  • Zhong, Wei-Ping;Belic, Milivoj R.;Huang, Tingwen
    • Journal of the Optical Society of Korea
    • /
    • 제16권4호
    • /
    • pp.425-431
    • /
    • 2012
  • Utilizing the three-dimensional Snyder-Mitchell model with a PT-symmetric potential, we study the influence of PT symmetry on beam propagation in strongly nonlocal nonlinear media. The complex Coulomb potential is used as the PT-symmetric potential. A localized spatiotemporal accessible soliton solution of the model is obtained. Specific values of the modulation depth for different soliton parameters are discussed. Our results reveal that in these media the localized solitons can exist in various shapes, such as single-layer and multi-layer disk-shaped structures, as well as vortex-ring and necklace patterns.

제한수로에서 임계속도로 항진하는 선박의 조파저항, 침하 및 종경사에 대한 비선형 해석 (A Nonlinear Theory for Wave Resistance and Squat of a Slender Ship Advancing Near the Critical Speed in Restricted Water)

  • 최항순
    • 대한조선학회지
    • /
    • 제26권4호
    • /
    • pp.3-13
    • /
    • 1989
  • 선박이 제한수로에서 임계속도로 항진하면 solitons라는 특이한 파가 발생하여 선속보다 빠른 속도로 앞으로 전파되어 나간다. 이로인하여 선박은 급격히 증가된 조파저항을 받게되며, 또한 심한 침하와 종경사가 발생하여 때로는 수로바닥에 좌초하기도 한다. 이 문제는 선형이론으로 설명할 수 없는 비선형형상으로, 본 논문에서는 포텐셜이론에 근거하여 세장선에 대한 Matched Asymptotic Expansion 기법을 적용하여 파는 Kadomtsev-Petviashvili 방정식으로 표현할 수 있음을 보였다. 이 방정식은 선수부의 soliton 발생과 전파를, 그리고 선미부의 3차원 파를 예측하여 실험에서 발견한 현상을 반영한다. 수치계산은 soliton 발생과정을 잘 보여주고 있으며, 실험치에 유사한 조파저항, 침하 및 종경사를 제공한다.

  • PDF