• Title/Summary/Keyword: Solids concentration

Search Result 523, Processing Time 0.026 seconds

Characteristics and anti-obesity effect of fermented products of coffee wine (커피발효물의 발효특성 및 항비만 효과)

  • So Hyun Park;Hyeon Hwa Oh;Do Youn Jeong;Young-Soo Kim
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.703-715
    • /
    • 2023
  • This study was conducted to investigate the fermentation characteristics and anti-obesity effects of acetic acid fermentation products of coffee wine. The live cell counts, soluble solids, pH and total acidity of the acetic acid unfermented coffee wine (AUFCW; day 0, before fermentation) were 6.35 log CFU/mL, 8.10 °Brix, 3.88, and 1.29%, respectively, while the acetic acid fermented coffee wine (AFCW; day 15, after fermentation) were 4.40 log CFU/mL, 8.57 °Brix, 3.07, and 7.45%, respectively. Pancreatic lipase inhibitory activity tended to increase as the acetic acid fermentation period increased. The anti-obesity effects of AFCW on 3T3-L1 cells, which was induced by MDI, were evaluated based on the lipid accumulation rate, leptin expression, and fat production-related gene expression (PPAR-γ and SREBP-1c) at the mRNA level. In the case of AFCW, the lipid accumulation rate and leptin expression were decreased to 69.37% and 50.20% at a concentration of 200 ㎍/mL, respectively, and the expression levels of PPAR-γ and SREBP-1c at the mRNA level were decreased to 79.89% and 48.81%, respectively. These results indicate that anti-obesity effect of acetic acid fermentation products could be increased by acetic acid fermentation of coffee wine.

Effects of 1-methylcyclopropene (1-MCP) treatment on the maintenance of fruit quality of RubyS apples during cold storage ('루비에스' 사과의 저온저장 중 과실품질 유지를 위한 1-methylcyclopropene 처리 효과)

  • Jingi Yoo;Hwajong Yoo;Nay Myo Win;Hee-Young Jung;Young-Je Cho;In-Kyu Kang
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.78-87
    • /
    • 2023
  • This study was conducted to evaluate the effect of different 1-methylcyclopropene (1-MCP) concentrations on fruit quality of small-sized RubyS apples during cold storage. After harvesting, the fruits were treated with 1-MCP at 0.5 or 1 µL/L concentrations and, subsequently, stored at 0℃ for 6 months. After 6 months, the flesh firmness of untreated fruits, which was 85.4 N at harvest, had gradually decreased to 46.5 N; however, that of 1-MCP-treated fruits was maintained at 59.1 and 59.5 N. Titratable acidity (TA) of untreated fruits had also decreased from 0.42 to 0.24%, whereas that of 1-MCP-treated fruits was maintained at 0.26 and 0.27%. Soluble solids content (SSC) did not differ in all fruits. However, the 1-MCP-treated fruits had lower levels of SSC/TA ratio than untreated fruits. Moreover, after 6 months, the ethylene production had increased to 47.0 µL/kg/h in the untreated fruits, whereas 1-MCP blocked the ethylene production at 1.4 and 1.7 µL/kg/h. The weight loss and peel color variables remained unaffected by 1-MCP treatments. Thus, these results indicated that, for RubyS apples, the storability was only 2 months at 0℃ without treatment, which can be extended to 6 months with 1-MCP treatments. The application of 1-MCP at 0.5 µL/L concentration is effectively and economically sufficient to maintain the quality of RubyS apples.

Effect of Nutrient Solution Strength on Growth, Fruit Quality and Yield of Strawberry 'Ssanta' in Hydroponics (배양액의 농도가 딸기 '싼타'의 생육, 수량 및 과실의 품질에 미치는 영향)

  • Jun, Ha Joon;Byun, Mi Soon;Liu, Shi Sheng;Jeon, Eui Hwan;Park, So Deuk;Chae, Jang Hee
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.192-198
    • /
    • 2012
  • Experiments were conducted to investigate the optimum concentration of nutrient solution in hydroponics for strawberry 'Ssanta' bred at Gyongsangbuk-do Agricultural Research & Extension Services. Nutrient solutions for strawberry, which made by Yamazaki, were supplied EC (Electrical Conductivity) 0.6, 0.8, 1.2, and $1.8dS{\cdot}m^{-1}$ after planting on cocopeat medium during experiment period. Growth of shoot of strawberries did not show statistical differences among treatments. Fruit length showed the longest in EC $0.8dS{\cdot}m^{-1}$ in all clusters. In the second flower cluster, fruit length showed longer in EC 0.8 and $1.2dS{\cdot}m^{-1}$ than EC 0.6 and $1.8dS{\cdot}m^{-1}$. In the third flower cluster, it showed the longest in EC 0.8 and $1.2dS{\cdot}m^{-1}$, followed by 0.6 and $1.8dS{\cdot}m^{-1}$. The longest was in EC $0.8dS{\cdot}m^{-1}$ and the shortest in EC $1.8dS{\cdot}m^{-1}$ in the fourth flower cluster. Fruit diameter did not show significant differences among treatments, but longest in EC 0.8 and $1.2dS{\cdot}m^{-1}$ in all clusters. The heaviest mean fruit weight appeared in EC $0.8dS{\cdot}m^{-1}$ in all flower clusters. And heavier in EC $1.2dS{\cdot}m^{-1}$ in the second and third clusters. Also the weight was significantly light in plants grown in EC 0.6 and $1.8dS{\cdot}m^{-1}$ in the second and third cluster. Soluble solids of fruit was the highest in EC $0.6dS{\cdot}m^{-1}$ in all clusters. As the results, we came to the conclusion that the optimum EC for strawberry 'Ssanta' was EC $0.8{\sim}1.2dS{\cdot}m^{-1}$ in this experiment.