• Title/Summary/Keyword: Solidification theory

Search Result 27, Processing Time 0.021 seconds

Natural Convection During Directional Solidification of a Binary Mixture (이성분 혼합액의 방향성 응고에서 자연 대류)

  • Hwang, In Gook;Choi, Chang Kyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.174-178
    • /
    • 2009
  • A mushy layer of dendritic crystals is often formed during solidification of a binary mixture. Natural convection in the mushy layer is analyzed by using the propagation theory we have developed. The critical Rayleigh numbers for the onset of convection are evaluated numerically using the self-similar stability equations based on Emms and Fowler's model. The present results approach those from quasi-static stability analysis in the limit of a large superheat or a small growth rate of the mushy layer.

On Compositional Convection in Near-Eutectic Solidification System Cooled from a Bottom Boundary

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.868-873
    • /
    • 2017
  • Natural convection is driven by the compositional buoyancy in solidification of a binary melt. The stabilities of convection in a growing mushy layer were analyzed here in the time-dependent solidification system of a near-eutectic melt cooled impulsively from below. The linear stability equations were transformed to self-similar forms by using the depth of the mushy layer as a length scale. In the liquid layer the stability equations are based on the propagation theory and the thermal buoyancy is neglected. The critical Rayleigh number for the mushy layer increases with decreasing the Stefan number and the Prandtl number. The critical conditions for solidification of aqueous ammonium chloride solution are discussed and compared with the results of the previous model for the liquid layer.

Linear Stability of Compositional Convection in a Mushy Layer during Solidification of Ammonium Chloride Solution (염화암모늄 수용액 응고시에 Mush 층에서 성분적 대류의 선형안정성)

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • The onset of convection in a mushy layer is analyzed by using linear stability theory in time-dependent solidification of a binary melt. A simplified model of a near-eutectic mush, in which the mush is assumed to be a porous block, is used and the propagation theory is applied to determine the critical conditions for the onset of convection. The present critical Rayleigh number is higher than the existing experimental result and also theoretical results obtained by considering the mushy layer with an overlying liquid layer. The constant pressure (permeable) condition applied on the mush-liquid interface produces a lower critical Rayleigh number, which is closer to the experimental results of aqueous ammonium chloride solution, compared with the impermeable condition.

Analysis on the non-equilibrium dendritic solidification of a binary alloy with back diffusion (역확산을 고려한 이원합금의 비평형 수지상응고 해석)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3361-3370
    • /
    • 1996
  • Micro-Macro approach is conducted for the mixture solidification to handle the closely linked phenomena of microscopic solute redistribution and macroscopic solidification behavior. For this purpose, present work combines the efficiency of mixture theory for macro part and the capability of microscopic analysis of two-phase model for micro part. The micro part of present study is verified by comparison with experiment of Al-4.9 mass% Cu alloy. The effect of back diffusion on the macroscopic variables such as temperature and liquid concentration, is appreciable. The effect, however, is considerable on the mixture concentration and eutectic fraction which are indices of macro and micro segregation, respectively. According to the diffusion time, the behavior near the cooling wall where relatively rapid solidification permits short solutal diffusion time, approaches Scheil equation limit and inner part approaches lever rule limit.

Heat Transfer Analysis on the Rapid Solidification Process of Atomized Metal Droplets (분무된 금속액적의 급속응고과정에 관한 열전달 해석)

  • 안종선;박병규;안상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2404-2412
    • /
    • 1994
  • A mathematical model has been developed for predicting kinematic, thermal, and solidification histories of atomized droplets during flight. Liquid droplet convective cooling, recalescence, equilibrium-state solidification, and solid-phase cooling were taken into account in the analysis of the solidification process. The spherical shell model was adopted where the heterogeneous nucleation is initiated from the whole surface of a droplet. The growth rate of the solid-liquid interface was determined from the theory of crystal growth kinetics with undercooling caused by the rapid solidification. The solid fraction after recalescence was obtained by using the integral method. The thermal responses of atomized droplets to gas velocity, particle size variation, and degree of undercooling were investigated through the parametric studies. It is possible to evaluate the solid fraction of the droplet according to flight distance and time in terms of a dimensionless parameter derived from the overall energy balance of the system. It is also found that the solid fraction at the end of recalescence is not dependent on the droplet size and nozzle exit velocity but on the degree of subcooling.

Prediction of Curl Distortion using Classical Lamination Theory in Stereolithography (SL 광조형 공정에서 고전적층이론을 적용한 곡률 변형 예측)

  • Kim, Gi-Dae;Lee, Jae-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.210-217
    • /
    • 2005
  • A curl distortion induced by shrinkage during stereolithography polymerization process is analyzed with the classical lamination theory. Test parts of different layer thickness and part thickness are manufactured and their deformations are measured with CMM. Curl distortion is generated by the differential shrinkage of the layers, where the total shrinkage includes the shrinkages due to solidification and the change of temperature. It is shown that the curl distortion increases exponentially with decreasing the total thickness of the part, whose smaller layer thickness induces larger curl distortion. It is verified that only a part of the total shrinkage plays a role in generating the curl distortion.

The Effects of Thermosolutal Convection on Macrosegregation during Alloy Solidification (합금응고과정에서 이중확산대류가 거시편석에 미치는 영향)

  • Lee, Gyun-Ho;Mok, Jin-Ho;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1337-1345
    • /
    • 2001
  • Numerical investigation is made to study the effects of thermosolutal convection on the formation of macrosegregation in a Pb-Sn alloy solidification process in a two dimensional confined rectangluar mold. The basic equations are sovled using the Contrinum Model theory with the SIMPE algorithm during the solidification process. In addition, to track the liquid-solid interface with time variations, the moving boundary condition was adopted and moving irregular interface shapes were treated with the time-dependent, boundary-fitted coordinate system. As the temperature reduces from the liquidus to the solidus, the liquid concentration of Sn, the lighter constituent, increases. Then the buoyancy-driven flow due to temperature and liquid composition gradients occurs in the mushy region and forms the complicated macrosegregation maps. belated to this phenomena, effects on the macrosegregation formation depending on the cooling condition and gravity values are examined.

Characteristics and Stability of Compositional Convection in Binary Solidification with a Constant Solidification Velocity (일정한 응고속도를 갖는 2성분 응고에서 조성 대류의 특성 및 안정성)

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • In binary solidification compositional convection in a porous mushy layer influences the quality of the final products. We consider the mushy layer solidifying from below with a constant solidification velocity. The disturbance equations for the mushy layer are derived using linear stability theory. The basic-state temperature fields and the distribution of the porosity in the mushy layer are investigated numerically. When the superheat is large, the thickness of the mushy layer is relatively small compared to the thickness of the thermal boundary layer. With decreasing the superheat the critical Rayleigh number based on the thickness of the mushy layer increases and the mushy layer becomes stable to the compositional convection. The critical Rayleigh number obtained from the continuity conditions of temperature and heat flux at the mush-liquid interface is smaller than that from the isothermal condition at the upper boundary of the mushy layer.

Development of Dissipation Model of Excess Pore Pressure in Liquefied Sand Ground (액상화된 모래지반의 과잉간극수압 소산모델 개발)

  • Kim, Sung-Ryul;Hwang, Jae-Ik;Ko, Hon-Yim;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.13-22
    • /
    • 2007
  • Recently, many researches on the dissipation of excess pore pressure in liquefied sand grounds have been performed to evaluate post-liquefaction behavior of structures. In this research, centrifuge tests were performed to analyze liquefaction behavior of level saturated sand grounds. Based on the test results, the evaluation model of solidified layer thickness was developed to simulate non-linear variation of the thickness with time. The thickness evaluation model was combined with the solidification theory and the consolidation theory in order to simulate dissipation of excess pore pressure. The suggested dissipation model properly estimated the solidified layer thickness and the time history of excess pore pressure.