• Title/Summary/Keyword: Solidification Process

Search Result 501, Processing Time 0.032 seconds

Effects of Microstructure Morphology on Fluid Flow Characteristics of A356 Commercial Alloy in Semi-Solid Slurry (반고상 A356 합금 슬러리의 미세조직에 따른 유동특성에 관한 연구)

  • Kim, Jae-Min;Lee, Seung-Hoon;Hong, C.P.
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.240-248
    • /
    • 2005
  • The rheocasting characteristics are strongly influenced by the microstructural morphology such as particle size, form factor and contiguity. In this study, the effect of structural morphology on fluid flow characteristics of A356 semi-solid alloy was investigated with a vacuum suction fluidity test. Semi-solid metal slurry was made by the mechanical stirring, the liquidus casting, and H-NCM to be analysed. H-NCM could obtain uniform and fine globular microstructures of 0.9 form factor and 55 ${\mu}m$ particle size. Inoculation was found to be effective for reducing particle size, however, for H-NCM it should be avoided due to the cause of increasing contiguity. The fluidity test indicated that the non-stirring method had higher fluidity and smaller liquid segregation in the same solid faction of 0.4 than the stirring method, for smaller particle size and higher form factor. It was observed that liquid segregation decreased as the particle size is smaller and form factor is higher. The results of die-casting experiment were a good agreement with those of fluidity test.

Die Casting Process Design for Gear Housing of Automobile Transmission by Using MAGMAsoft (MAGMAsoft를 이용한 자동차 변속기용 Gear Housing의 다이캐스팅 주조공정 설계)

  • Kim Eok-Soo
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.112-120
    • /
    • 2005
  • In the die casting process, the flow of liquid metal has significant influence on the quality of casting products and die life. For the optimal process design of gear housing of automobile transmission, various analyses were performed in this study by using computer simulation code, MAGMAsoft. The simulation has been focused on the molten metal behaviors during the mold filling and solidification stages for the sound casting products. Also internal defects were predicted by application of air pressure and feeding criteria.

Effect of Minor Additives on Casting Properties of AC4A Aluminum Casting Alloys (AC4A 알루미늄 합금의 주조특성에 미치는 미량 첨가원소의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.37 no.5
    • /
    • pp.148-156
    • /
    • 2017
  • The effects of minor additives on the casting properties of AC4A aluminum alloys were investigated. Measurements of the cooling curve and microstructure observations were conducted to analyze the effects of Ti-B and Sr minor elements during the solidification process. A fine grain size and an increase in the crystallization temperature for the ${\alpha}-Al$ solution were evident after the addition of 0.1wt% Al-5%Ti-1%B additive. The modification effect of the eutectic $Mg_2Si$ phase with the addition of 0.05% Al-10%Sr additive was prominent. A fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident. Fluidity, shrinkage and solidification-cracking tests were conducted to evaluate the castability of the alloy. The combined addition of Al-5%Ti-1%B and Al-10%Sr additives showed the maximum filling length owing to the effect of the fine ${\alpha}-Al$ grains. The macro-shrinkage ratio increased, while the micro-shrinkage ratio decreased with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives. The macro-shrinkage ratio was nearly identical, while the micro-shrinkage ratio increased with the addition of the Al-10%Sr additive. The tendency of the occurrence of solidification cracking decreased owing to the effect of the fine ${\alpha}-Al$ grains and the modification of the $Mg_2Si$ phase with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives.

Effect of Grain Refiner and Eutectic Si Modifier on Casting Properties of Al-Si-Cu Alloy System Containing Recycled Scrap (재활용 스크랩 함유 Al-Si-Cu계 합금의 주조특성에 미치는 결정립 미세화제와 공정 Si 개량화제의 영향)

  • Sung, Dong-Hyun;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.121-131
    • /
    • 2018
  • The effect of additives on the castability of the AC2BS aluminum alloy, which contains 35% recycled scrap, was investigated. For the wide utilization of the recycled scrap AC2BS aluminum alloy, the research results were compared to those with the AC2B virgin alloy, which is typical Al-Si-Cu alloy system. It was confirmed that the addition of Al-5%Ti-1%B increased the ${\alpha}$-Al nucleation temperature during solidification and decreased the grain size through cooling curve and microstructural observations of the recycled alloy. It was also found that an addition of Al-10%Sr decreased the eutectic Si growth temperature during the solidification process and modified the shape of the eutectic Si of the recycled alloy. The characteristics of fluidity, shrinkage and solidification crack strength were evaluated. For the AC2BS aluminum alloy containing 35% recycled scrap, both ${\alpha}$-Al grain refinement due to Ti-B and eutectic Si modifications due to Sr contributed to the improvement of the fluidity. The macro- shrinkage ratio increased with additions of both Al-10%Sr and Al-5%Ti-1%B and the micro-shrinkage ratio increased with the addition of Al-10%Sr but decreased with the addition of Al-5%Ti-1%B. The casting characteristics of TiB and Sr-treated AC2BS aluminum alloy containing 35% recycled scrap are similar to those of AC2B virgin alloy. The improvement of the solidification crack strength of the AC2BS aluminum alloy was possible by the reduction of the grain boundary the stress concentration through the enhancement by both ${\bullet}{\cdot}$-Al refinement and eutectic Si modification. More extensive use of the AC2BS aluminum alloy containing 35% recycled scrap can be expected in the future.

Silicon purification through acid leaching and unidirectional solidification (산처리와 일방향 응고를 이용한 실리콘 정제)

  • Eum, Jung-Hyun;Chang, Hyo-Sik;Kim, Hyung-Tae;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Recently the shortage of silicon resources especially for poly-silicon of purity higher than 99.9999% leads to search for the more cheap and quick synthesizing routes for silicon feedstock. In order to solve this situation, we investigated the purification process of metallurgical grade (MG) silicon of purity around 99% by the acid leaching and following the unidirectional solidification. MG-Si lumps are pulverized with a planetary mill, and then leached with HCl/$HNO_3$/HF acid solution. As a result, the concentration of metal impurities including Al, Fe, Ca, Mn, etc. decreased dramatically. This process led to silicon content higher than 99.99%. The purified silicon powders were compacted and have been melted and uni-directionally solidified with heat exchange method (HEM) furnace. The properties of multicrystalline silicon ingots were specific resistance of $0.3{\Omega}{\cdot}cm$ and minority carrier life time (MCLT) of $3.8{\mu}{\cdot}sec$.

Solidification Process of a Binary Mixture with Anisotropy of the Mushy Region (머시영역의 비등방성을 고려한 2성분혼합물의 응고과정)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.162-171
    • /
    • 1993
  • This paper deals with the anisotropy of the mushy region during solidification process of a binary mixture. A theoretical model which specifies a permeability tensor in terms of pricipal values is proposed. Also, the governing equations are modified into convenient forms for the numerical analysis with the existing algorithm. Some test computations are performed for soeidification of aqueous ammonium chloride solution contained in a square cavity. Results show that not only the present model is capable of resolving fundamental characteristics of the tranport phenomena, but also the anisotropy significantly affects the interdendritic flow structure, i.e., double-diffusive convection and macrosegregation patterns.

Effects of Precipitate Element Addition on Microstructure and Magnetic Properties in Magnetostrictive Fe83Ga17 alloy

  • Li, Jiheng;Yuan, Chao;Zhang, Wenlan;Bao, Xiaoqian;Gao, Xuexu
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • The <100> oriented $Fe_{83}Ga_{17}$ alloys with various contents of NbC or B were prepared by directionally solidification method at the growth rate of $720mm{\cdot}h^{-1}$. With a small amount of precipitates, the columnar grains grew with cellular mode during directional solidification process, while like-dendrite mode of grains growth was observed in the alloys with higher contents of 0.5 at% due to the dragging effect of precipitates on the boundaries. The NbC precipitates disperse both inside grains and along the boundaries of $Fe_{83}Ga_{17}$ alloys with NbC addition, and the Fe2B secondary phase particles preferentially distribute along the grain boundaries in B-doped alloys. Precipitates could affect grain growth and improved the <100> orientation during directional solidification process. Small amount of precipitate element addition slightly increased the magnetostrictive strain, and a high value of 335 ppm under pre-stress of 15 MPa was achieved in the alloys with 0.1 at% NbC. Despite the fact that the effect on magnetic induction density of small amount of precipitates could be negligible, the coercivity markedly increased with addition of precipitate element for $Fe_{83}Ga_{17}$ alloy due to the retarded domain motion resulted by precipitates.

A Study on the Pelletization of Powdered Radioactive Waste by Roll Compaction (롤 컴팩션을 이용한 분말 방사성폐기물의 펠렛화 연구)

  • Song, Jong-Soon;Lim, Sang-Hyun;Jung, Min-Young;Kim, Ki-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.203-212
    • /
    • 2019
  • Disposal nonconformity of radioactive wastes refers to radioactive wastes that need to be treated, solidified and packaged during operation or decommissioning of NPPs, and are typically exemplified by particulate radioactive wastes with dispersion characteristics. These wastes include the dried powders of concentrated wastes generated in the process of operating NPPs, slurry and sludge, various powdered wastes generated in the decommissioning process (crushed concrete, decontamination sludge, etc.), and fine radioactive soil, which is not easy to decontaminate. As these particulate wastes must be packaged so that they become non-dispersive, they are solidified with solidification agents such as cement and polymer. If they are treated using existing solidification methods, however, the volume of the final wastes will increase. This drawback may increase the disposal cost and reduce the acceptability of disposal sites. Accordingly, to solve these problems, this study investigates the pelletization of particulate radioactive wastes in order to reduce final waste volume.

Measurement of Heat Transfer Coefficient of Magnesium Alloy and Temperature Change of Roll using Heat Transfer Solidification Analysis Method (전열응고해석법을 이용한 마그네슘합금의 열전달계수 및 롤의 온도변화 측정)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.391-395
    • /
    • 2022
  • Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.

Characteristics of Organic Polymer Soil Pavement Curing Condition (양생조건에 따른 유기계 폴리머 흙 포장의 특성)

  • Hwang, Sungpil;Jeoung, Jaehyeung;Lee, Yongsoo;Ryu, Sanghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.35-42
    • /
    • 2014
  • The efforts to reduce carbon emission have been made in many aspects and in road, the study to develop the construction method which will replace asphalt and cement is also underway. But given the low cost and high performance offered by cement, among many solidification agents, it's difficult to seek the competent alternative. Polymeric material has been used in various ways for its advantages including lightweight and easy process for complex function and generates less carbon emission, and thus it would possibly be efficient if it replaces soil pavement using cement. This study, using three different types of organic polymeric solidification agents with different solidification principle, is intended to identify the difference in strength depending on curing method, natural dry or oven dry. Applicability of organic polymeric solidification agents to walkway and bike lane was investigated and as a result of unconfined strength test, all of them satisfied the minimum strength requirements of bike lane. Furthermore, strength characteristics of soil pavement depending on variation of water content was evaluated to identify the relationship, thereby appropriate curing method using organic polymeric solidification agent is proposed.