• Title/Summary/Keyword: Solidification Process

Search Result 501, Processing Time 0.026 seconds

Field Application of an Eco-Friendly Solidification Material for Forest Road Pavement (친환경 고화재를 이용한 임도포장의 현장 적용성 연구)

  • Lee, Kwan-Hee;Ko, Chi-Ung;Kim, Dong-Hyun;Oh, Se-Wook;Kim, Dong-Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • Among the forest road pavement methods, the majority of current constructions utilize concrete pavements but it has disadvantages as follows: many cracked concrete pavements generated by the erosion of underlying soil layers, could not be used as forest roads in steep slope during winter, and cement contains hazardous chemicals (hexavalent chromium, etc.). In order to supplement the limitations of the use of concrete pavement, this study was conducted to investigate the operation process and cost, the strength and compaction of the experimental forest road pavement(85 m) utilizing eco-friendly solidification material at Goryeong-gun, Gyeongsangbuk-do. The work elements of experimental forest road paving were classified into: preparation, Roadbed excavation, Roadbed grading, subgrade compaction, form work, collection and selection of site soil, mixing site soil and eco-friendly solidification material, paving by eco-friendly solidification material, compaction by vibrating roller and curing. The result of economic analysis using construction cost shows that for concrete costs total to $38,681won/m^3$ while for the eco-friendly paving material it is $38,245won/m^3$. Thus the construction costs for concrete and the eco-friendly paving material are similar. And the results of the Schmidt Hammer test for strength analysis by curing period are 10.5-13.5 MPa for 7 days, 18.1-22.7 MPa for 14 days, and 20.8-23.0 MPa for 28 days.

Formation of Oxide Inclusions in the Molten Aluminium Alloys (알루미늄합금 용탕중의 산화개재물 형성)

  • Lim, Jeong-Ho;Kim, Ki-Bae;Yoon, Woo-Yung;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.439-449
    • /
    • 1998
  • Formation of oxide inclusions in the molten aluminium alloys during solidification is investigated. The oxidation tendency of both Al-4.5wt%Cu and Al-7wt%Si alloys is increased with melt temperature, particularly over $700^{\circ}C$. However, an Al-5wt%Mg alloy exhibits a decreasing mode over $800^{\circ}C$. The oxidation behavior with holding time shows the S curve shape for all of the alloys. It is shown that the mechanism of oxidation of Al-5wt%Mg alloy has a two step process different from that of Al-4.5wt%Cu and Al-7wt%Si alloys. The species and morphology of oxide inclusions in each alloy is also shown. The microstructure was more coarsened during solidification when the melt contains a large amount of oxide inclusion than when it doesn't. This result can be explained in terms of both the hindrance of heat extraction by oxide film formed on the aluminium melt and the difference of heat capacity between the aluminium melt and oxide inclusion during solidification.

  • PDF

The Characteristic Refinement of Poly-Si by Uni-directional Solidification with Thermal Gradient (일방향 응고시 온도 구배에 의한 다결정 실리콘 정련 특성)

  • Jang, Eunsu;Yu, Joon-Il;Park, Dongho;Moon, Byungmoon;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.2-59.2
    • /
    • 2010
  • 결정형 태양 전지의 보급화를 위하여 고순도 실리콘을 저렴하게 제조할 수 있는 기술 개발이 필요하다. 본 연구에서는 고순도 실리콘을 경제적으로 제조하기 위하여 대역 정제에 의한 일방향성 응고법을 이용한 정련 연구를 진행하였으며, 응고 속도와 고 액상의 온도 구배가 정련도에 미치는 영향을 분석 하였다. 본 실험에 사용된 일방향 응고장치는 실리콘 용탕이 장입된 도가니 하부의 열 교환기를 통한 냉각에 의해 용탕 하부에서 상부 방향으로의 일방향성 응고가 진행되며, 응고 진행시 용탕의 흔들림에 의한 정련능의 감소를 방지하기 위해 가열 영역이 이동하는 Stober 공정을 채택하였다. 가열 영역은 실리콘 용융을 위한 상부 가열 영역과 응고 진행시 응고부의 온도 제어를 위한 하부 가열 영역으로 구성되어 있으며, 두 가열 영역의 온도 제어를 통해 응고중인 실리콘의 고 액상의 온도 구배를 조절하였다. 일방향 응고에 의한 정련법에서 고 액상의 온도 구배가 증가할수록 2차 수지상의 발달이 감소하고, 주상정의 수지상 형태를 유지하게 되어 고 액 공존영역에서 액상 영역으로의 확산이 원활하게 이루어져 분배계수를 이용한 정련도가 좋아지게 되며, ICP 분석을 통해 온도 구배의 증가에 따라 정련능이 증가하는 양상을 확인 할 수 있었다. 고 액상의 온도 구배의 조절을 통한 공정 시간 대비 정련도의 향상을 통해 결정형 태양전지의 생산성의 증가를 통한 저가화를 이룰 수 있을 것이다.

  • PDF

A Study of Heat Storage System with Phase Change Material - Inward Melting and Solidification in a Horizontal Cylinder - (상변화물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내에서의 내향용융 및 응고열전달 실험 -)

  • Kim, I.G.;Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.319-329
    • /
    • 1989
  • Heat transfer phenomena during inward melting and solidification process of the phase change material were studied expertimentally. The phase change medium was 99% pure n-docosane paraffin ($C_{22}H_{46}$). The solid-liquid interface motion during phase change was recorded photographically. Measurements were made on the temperature, the solid-liquid interface, the melted or frozen mass and the various energy components stored or extracted from the cylinder wall. For melting, the experimental results reaffirmed the dominant role played by the conduction at an early stage, by the natural convection at longer time. For solidification, natural convection effects in the superheated liquid were modest and were confined to short freezing time. Although the latent energy is the largest contributor to the total stored or extracted energy, the aggregate sensible energies can make a significant contribution, especially at large cylinder wall superheating or subcooling, large initial phase change material subcooling or superheating.

  • PDF

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(I) - Bonding Phenomena and Mechanism - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(I))

  • 강정윤;권민석;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.82-88
    • /
    • 2003
  • The bonding phenomenon and mechanism in the transient liquid phase bonding(TLP Bonding) of directionally solidified Ni base superalloy, GTD-111 was investigated. At the bonding temperature of 1403K, liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B and Si into the base metal and solids in the bonded interlayer grew epitaxially from mating base metal inward the insert metal. The number of grain boundaries formed at the bonded interlayer was corresponded with those of base metal. The liquation of grain boundary and dendrite boundary occurred at 1433K. At the bonding temperature of 1453K which is higher than liquation temperature of grain boundary, liquids of the Insert metal were connected with liquated grain boundaries and compositions in each region mixed mutually. In Joints held for various time at 1453t phases formed at liquated grain boundary far from the interface were similar to those of bonded interlayer. With prolonged holding time, liquid phases decreased gradually and liquids of continuous band shape divided many island shape. But liquid phases did not disappeared after holding for 7.2ks at 1453k. Isothermal solidification process at the bonding temperature which is higher than the liquation temperature of the grain boundary was controlled by diffusion of Ti to be result in liquation than B or Si. in insert metal. (Received January 15, 2003)

Application of Solifidification Grain Structure Simulation for the Casting by Cellular Automaton Method (Cellular Automaton법을 이용한 주물의 응고조직 시뮬레이션에의 적용)

  • Cho, In-Sung;Ohnaka, Itsuo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.1
    • /
    • pp.41-47
    • /
    • 2001
  • Computer simulation of the solidification grain structure was applied to the casting process by using CA-DFDM. The Direct Finite Difference Method (DFDM) for temperature field calculation and latent heat treatment was coupled with Cellular Automaton (CA) method for the grain growth. 2-dimensional simulation of the solidification grain structures and calculation of the concentration fields were carried out and the calculated concentration distributions were compared with exact solution. Castings having complex geometries such as turbine blades were applied for 3-dimensional CA-DFDM. Effects of grain selector and mold extraction speed on the solidification grain structures in the turbine blade were examined.

  • PDF

Fundamental study on development of latent heat storage material for waste heat recovery of biomass gasification

  • Kim, MyoungJun;Yu, JikSu;Chea, GyuHoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.533-540
    • /
    • 2014
  • Recently, latent heat thermal energy storage system (LHTES) has gained attention in order to utilize middle temperature (373~573 K) waste heat from biomass gasification. This paper has investigated thermo-physical properties of erythritol [$CH_2OHCHOH$ $CHOHCH_2OH$], mannitol [$CH_2OH$ $(CHOH)_4CH_2OH$] and their compounds as phase change materials (PCMs). The differential scanning calorimetry (DSC) was applied to measure the melting point and latent heat of these PCMs. Also the melting and solidification characteristics of these PCMs were observed in a glass tube with a digital camera. In the DSC measurement, when the amount of mannitol content was more than 40 mass%, the melting point of these compounds show two melting points. The experimental results showed that the velocity of melting and solidification were different for every mixture ratio of compounds. These compounds had the super-cooling phenomenon during the solidification process.

An Assessment on the Formation of Oscillation Mark of the Continuously Casted Steel Slabs (연속주조된 강재 슬래브 표면의 Oscillation Mark 형성에 관한 평가)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.257-267
    • /
    • 2003
  • In early solidification during the continuous casting of steel slabs, the formation of oscillation marks on the surface of slabs was mainly affected by carbon contents and casting conditions. The control of oscillation mark is required for the HCR(Hot Charged Rolling) process because the deep oscillation marks seriously deteriorate the surface qualities of steel slabs. The metallographic study has revealed that the oscillation mark can be classified principally according to the presence or absence of a small 'subsurface hook' and the depth of the oscillation marks in the subsurface structure at the basis of individual oscillation marks. The subsurface hook of oscillation marks was either straight or curved. When the amount of overflow was small and the subsurface hook was formed in the top of oscillation marks, the subsurface hook was straight and the oscillation mark was shallow. The oscillation marks without subsurface hook have small early solidification shell and were formed wide. The actual negative strip time$(t_N)$ was changed by the effect of meniscus level fluctuation Therefore irregular early solidification shell and oscillation mark were formed.

A Study on the Two-Dimensional Phase Change Problem in a Rectangular Mold with Air-Gap Resistance to Heat Flow (공기층 저항을 고려한 사각형 주형내에서의 2차원 상변화문제에 관한 연구)

  • 여문수;손병진;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1205-1215
    • /
    • 1992
  • The solidification rate is of special importance in determining the casting structures and properties. The heat transfer characteristics at the interface between the mold and the casting is one of the major factors that control the solidification rate. The thermal resistance exists due to the air-gap formation at the mold/casting interface during the freezing process. In this study two-dimensional Stefan problem with air-gap resistance in the rectangular mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method. The effects of the major parameters, such as mold geometry, thermal conductivity, heat transfer coefficient, and initial temperature of casting, on the thermal characteristics are investigated.

Production of concrete paving blocks using electroplating waste - Evaluation of concrete properties and solidification/stabilization of waste

  • Sgorlon, Juliana Guerra;Tavares, Celia Regina Granhen;Franco, Janaina de Melo
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.337-353
    • /
    • 2014
  • The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.