• Title/Summary/Keyword: Solidification Process

Search Result 501, Processing Time 0.026 seconds

Durable Characteristic of Ground Solidification Material's Body of Hardening used Eco-friendly SCW Method (친환경 SCW공법용 지반고화재 경화체의 내구특성)

  • Jo, Jung-Kyu;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.118-119
    • /
    • 2017
  • In the S.C.W (soil cement wall) grouting solution, Cement grout ratio of 1 part Portland cement and 1part water is being used. However, Co2 and harmful heavy metals such as cr6+ are discharged in the process, causing a serious environmental issue. The purpose of the present study is therefore to substitute cement grout to inorganic binder and identify durability properties of ground solidification materials.

  • PDF

Bonding Phenomena during Transient Liquid Phase Bonding of CMSX-4, High Performance Single Crystal Superalloy (고성능 단결정 초내열합금 CMSX-4의 액상확산접합현상)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2001
  • The bonding phenomena of Ni base single crystal superalloy. CMSX-4 during transient liquid phase(TLP) bonding was investigated using MBF-80 insert metal. Bonding of CMSX-4 was carried out at 1,373∼1,548K for 0∼19.6ks in vacuum. The (001) orientation of each test specimen was aligned perpendicular to the bonding interface. The dissolution width of base metal was increased when the bonding temperature and holding time were increased. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process. Borides were formed in the bonded layer during TLP bonding operation. The solid phase grew epitaxially into the liquid phase from substrates and single crystallization could be readily achieved during the isothermal solidification.

  • PDF

The relationship between minority carrier life time and structural defects in silicon ingot grown with single seed

  • Lee, A-Young;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Among the various possible factors affecting the Minority Carrier Life Time (MCLT) of the mc-Si crystal, dislocations formed during the cooling period after solidification were found to be a major element. It was confirmed that other defects such as grain boundary or twin boundary were not determinative defects affecting the MCLT because most of these defects seemed to be formed during the solidification period. With a measurement of total thickness variation (TTV) and bow of the silicon wafers, it was found that residual stress remaining in the mc-Si crystal might be another major factor affecting the MCLT. Thus, it is expected that better quality of mc-Si can be grown when the cooling process right after solidification is carried out as slow as possible.

Dissimilar Metal Welding of Inconel 600 and STS304 by a continuous wave Nd:YAG Laser (연속파형 Nd:YAG레이저를 이용한 Inconel 600와 STS 304의 이종금속용접)

  • Shin, Ho-Jun;Yoo, Young-Tae;Song, Seong-Wook
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1120-1125
    • /
    • 2004
  • Welding characteristics of STS304 stainless steel and Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. Alloy 600 being used in steam generator tubing of pressurized water reactor(PWR) exposed to some corrosion environment, stress corrosion cracking can occur on this material. Presented here are the results from a series of experiments in which dissimilar metal welds were made using the gas tungsten arc welding process with pure argon shielding gas. But It is well known that solidification cracking susceptibility of austenitic alloys depends on the solidification temperature range and amount/distribution of solute rich liquid that exists at the terminal stages of solidification. An experimental study was conducted to determine effects of welding parameters and to optimize those parameters that have the most influence on eliminating or reducing the extent welding zone formation at dissimilar metal welds.

  • PDF

Weldability of Al Alloys,Part I ;Cfacking and Porosity (알루미늄 합금의 용접특성 - part I : 균열 및 기공)

  • 이창희;장래웅
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.1-12
    • /
    • 1992
  • A literature review was conducted to survey informations available on the welding metallurgy of aluminum alloys and its effect on fusion weldability, especially on solidification cracking and pore formation. Solidification cracking behavior of Al weld is a complicate matter as compared to other high alloys, where a relatively simple Fe-X(most detrimental elements S, P, B, Si, etc) binary diagram can be successfully applicable. Both additive and synergistic effects of elements should be considered together. A same element play a different role from system to system. Porosity, caused by hydrogen contamination of the weld is one of the most troublesome welding problems. The primary sources of hydrogen are believed to be an absorbed moisture on the filler metal or base metal and in the shielding gas. It is extremely important that reliable quality-control procedures be employed to eliminate all possible sources of hydrogen contamination. Selection of proper process and parameters is sometimes more important than controlling of alloying elements in order to make a defect-free weld.

  • PDF

The structures and mechanical properties of unidirectionally solidified Al-Fe-Ni alloy (일방향응고시킨 Al-Fe-Ni 합금의 조직과 기계적 성질)

  • 김여원;신민교
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.79-90
    • /
    • 1983
  • The examination for the changes of structures and mechanical properties in directionally solidified Al-Fe-Ni alloys containing the small amount of Fe and Ni was carried out by the varying the composition and solidification rate R of alloy, provided that the temperature gradient was 80 .deg.C/cm. The result were obtained as follows. A) In proportion to the increase of the solidification rate (R), the crystallized phase of this alloy was changed from the Ribbon-type structure to the Rod-type structure. B) The strength was rapidly increased in the changing process of composite shape from the Ribbon-type to the Rod-type with the solidification rate (R) increasing. C) The fiber stress (${\sigma}^f$) and Young's modulus ($E_f$) calculated for the Rod-type structure were 220 kg/$mm^2$ and 11, 800 kg/$mm^2$ respectively, which were in good accord with the rule of Mixtures.

  • PDF

A Study on Development of the Three-Dimensional Numerical Model to Analyze the Casting Process: Mold Filling and Solidification

  • Mok Jinho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1488-1502
    • /
    • 2005
  • A three dimensional model was developed to analyze the mold filling and solidification in the casting processes. The model uses the VOF method for the calculation of the free surface and the modified Equivalent Specific Heat method for the treatment of the latent heat evolution. The solution procedure is based on the SIMPLER algorithm. The complete model has been validated using the exact solutions for phase change heat transfer and the experimental results of broken water column. The three-dimensional model has been applied to the benchmark test and the results were compared to those from experiment, a two-dimensional analysis, and another three dimensional numerical model.

A theoretical analysis on the inviscid stagnation-flow solidification problem (비점성 정체 유동 응고 문제에 대한 이론적 해석)

  • 유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The solution of dimensionless governing equations is determined by the three dimensionless parameters of (temperature ratio/conductivity ratio), Stefan number, and diffusi-vity ratio. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The equilibrium state is dependent on (temperature ratio/conductivity ratio), but is independent of Stefan number and diffusivity ratio. The effect of fluid flow on the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state, and the characteristics of the solidification process for all the dimensionless parameters are elucidated.

  • PDF

Numerical analysis of steady and transient processes in a directional solidification system

  • Lin, Ting-Kang;Lin, Chung-Hao;Chen, Ching-Yao
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.341-353
    • /
    • 2016
  • Manufactures of multi-crystalline silicon ingots by means of the directional solidification system (DSS) is important to the solar photovoltaic (PV) cell industry. The quality of the ingots, including the grain size and morphology, is highly related to the shape of the crystal-melt interface during the crystal growth process. We performed numerical simulations to analyze the thermo-fluid field and the shape of the crystal-melt interface both for steady conditions and transient processes. The steady simulations are first validated and then applied to improve the hot zone design in the furnace. The numerical results reveal that, an additional guiding plate weakens the strength of vortex and improves the desired profile of the crystal-melt interface. Based on the steady solutions at an early stage, detailed transient processes of crystal growth can be simulated. Accuracy of the results is supported by comparing the evolutions of crystal heights with the experimental measurements. The excellent agreements demonstrate the applicability of the present numerical methods in simulating a practical and complex system of directional solidification system.

Analytical solution to the conduction-dominated solidification of a binary mixture (열전도에 의해 지배되는 이성분혼합물의 응고문제에 대한 해석해)

  • Jeong, Jae-Dong;Yu, Ho-Seon;No, Seung-Tak;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3655-3665
    • /
    • 1996
  • An analytical solution is presented for the conduction-dominated solidification of a binary mixture in a semi-infinite medium. The present approach differs from that of other solution by these four characteristics. (1) Solid fraction is determined from the phase diagram, (2) thermophysical properties in mushy zone are weighted according to the local solid fraction, (3) non-equilibrium solidification can be simulated and (4) the cooling condition of under-eutectic temperature can be simulated. Up to now, almost all analyses are based on the assumption of constant properties in mushy zone and solid fraction linearly with temperature or length. The validation for these assumptions, however, shows that serious error is found except some special cases. The influence of microscopic model on the macroscopic temperature profile is very small and can be ignored. But the solid fraction and average solid concentration which directly influence the quality of materials are drastically changed by the microscopic models. An approximate solution using the method of weighted residuals is also introduced and shows good agreement with the analytical solution. All calculations are performed for NH$_{4}$Cl-H$_{2}$O and Al-Cu system.