• 제목/요약/키워드: Solidification Interface

검색결과 105건 처리시간 0.031초

Al-Si/$SiC_p$ 복합재료에서 SiC의 편석에 미치는 응고 조건의 영향 (Influence of Solidification Condition on the Segregation of SiC Particles in the Al-Si/$SiC_p$ Composites)

  • 김종찬;권혁무
    • 한국주조공학회지
    • /
    • 제17권2호
    • /
    • pp.180-187
    • /
    • 1997
  • The influence of solidification condition on the segregation of SiC particles in the $Al-xSi/6wt%SiC_p$(x: 6, 10, 14, 18${\cdot}$wt%) composites was investigated in the study. The results are as follows: 1) During the counter-gravity unidirectional solidification of $Al-Si/SiC_p$ composites melt, most of the SiC particles are pushed to the top of the casting. 2) The SiC particles pushing in the $Al-Si/SiC_p$ composite melts are not observed, when the interface velocity of melts increases more than 1.41 ${\mu}m/sec$. 3) The SiC particles are entrapped in the interdendrite regions, when the sizes of SiC particles in the $Al-Si/SiC_p$ composites are large than ${\varphi}22{\mu}m$.

  • PDF

Al-Cu 합금의 GTA 용접에서 중력에 따른 미세조직 거동에 관한 연구 (Gravitational effects on the microstructural evolution of GTA welds in an Al-Cu alloy)

  • 강남현
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.176-178
    • /
    • 2004
  • Gas tungsten arc welds on Al-4 wt% Cu alloys were investigated to determine effects of gravitational orientation on the weld solidification behavior. Outward convection flows in the parallel-down weld might be inhibited because of its reverse direction with respect to the gravity vector. This resulted in abnormal 'S' shape of the trailing s-1 interface and the solidification rate (Vs), which was receded toward the weld pool center. Significant influence of gravitational orientation resulted in the variation on the weld pool shape associated with convection flows, which in turn affected solidification orientation/morphology and the primary dendrite spacing(λ$_1$).

  • PDF

고성능 단결정 초내열합금 CMSX-4의 액상확산접합현상 (Bonding Phenomena during Transient Liquid Phase Bonding of CMSX-4, High Performance Single Crystal Superalloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권4호
    • /
    • pp.423-428
    • /
    • 2001
  • The bonding phenomena of Ni base single crystal superalloy. CMSX-4 during transient liquid phase(TLP) bonding was investigated using MBF-80 insert metal. Bonding of CMSX-4 was carried out at 1,373∼1,548K for 0∼19.6ks in vacuum. The (001) orientation of each test specimen was aligned perpendicular to the bonding interface. The dissolution width of base metal was increased when the bonding temperature and holding time were increased. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process. Borides were formed in the bonded layer during TLP bonding operation. The solid phase grew epitaxially into the liquid phase from substrates and single crystallization could be readily achieved during the isothermal solidification.

  • PDF

수지상가지의 조대화를 고려한 이원합금의 응고과정동안 용질 재분배 해석 (Analysis on the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1437-1448
    • /
    • 1996
  • This paper presents a simplified model for approximate analysis of the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys. By introducing a quadratic concentration profile with a time-dependent coefficient, the integral equation for diffusion in the solid phase is reduced to a simple differential relation between the coefficient and the solid-liquid interface position. The solid fraction corresponding to the system temperature is readily determined from the relation, phase equilibrium and the overall solute balance in which the liquid phase is assumed to be completely mixed. In order to validate the developed model, calculations are performed for the directional solidification of Al-4.9 mass Cu alloy. The predicted eutectic fractions for a wide range of the cooling rate reasonably agree with data from the well-known experiment as well as sophisticated numerical analyses. Also, the results for the back diffusion limits are consistent with available references. Additional calculations show that the characteristic parameters such as the coarsening, density variation and nonlinarity in the phase diagram significantly affect the microsegregation. Owing to the simplicity, efficiency and compatibility, the present model may be suitable for the micro-macroscopic solidification model as a microscopic component.

응고중 구리 주형과 알루미늄 용탕의 계면열전달계수에 미치는 용탕과열도와 도형재의 영향 (Effects of Superheat and Coating Layer on Interfacial Heat Transfer Coefficient between Copper Mold and Aluminum Melt during Solidification)

  • 김희수;신제식;이상목;문병문
    • 한국주조공학회지
    • /
    • 제24권5호
    • /
    • pp.281-289
    • /
    • 2004
  • The present study focused on the estimation of the interfacial heat transfer coefficient as a function of the surface temperature of the aluminum casting at the mold/casting interface to investigate the effects of superheat and coating layer. The casting experiments of aluminum into a cylindrical copper mold were systematically conducted to obtain the thermal history during solidification. The thermal history recorded by four thermocouples embedded both in the mold and the casting was used to solve the inverse heat conduction problem using Beck's method. The effects of superheat and coating on the interfacial heat transfer coefficient in the liquid state, during the solidification, and in the solid state were comparatively discussed. In the liquid state, the interfacial heat transfer coefficient is thought to be affected by the roughness of the mold, the wettability of the casting on the mold surface, and the thermophysical properties of the coating layer. When the solidification begins, the air gap forms between the casting and the mold, and the interfacial heat transfer coefficient becomes a function of the air gap as well as surface roughness and the superheat. In the solid phase, it depends only upon the thermal conductivity and the thickness of the air gap. The coating layer reduces seriously the interfacial heat transfer coefficient in the liquid state and during the solidification.

수평브릿지만법에 의한 갈륨비소 과도기 성장의 유한요소 해석 (Finite element analysis of transient growth of GaAs by horizontal Bridgman method)

  • 김도현;민병수
    • 한국결정성장학회지
    • /
    • 제6권1호
    • /
    • pp.19-31
    • /
    • 1996
  • 갈륨 비소 반도체 결정을 성장시키는 데 많이 사용되는 수평브렷지만법에 의하여 성장된 갈륨비소 단결정 내에셔 불순물 분포를 알아보기 위하여 액상에서 열전달, 물질전달, 유 체흐름과 고상에서 열전달을 묘사하는 과도기 모탤을 수립하였고 유한요소법과 음함수 척분법 에 의하여 수치모사를 행하였다. 그 결과 Gr이 작은 경우에는 확산조절성장의 특성을 보였으며 G Gr이 1,700 정도만 되어도 농도의 최소값이 계면 근처로 이동하였다. 응고가 진행됨에 따라 계 면의 곡률이 증가하였고, 흐름에 의한 혼합이 안정될 때까지 수직편석이 증가하였다. 수펑편석 은 응고가 진행됨에 따라 증가하였지만 흐름의 강도가 강한 경우에는 곧 일정하게 유지되였다. G Gr이 아주 작거나 큰 경우에는 Smith식과 Scheil식의 경우와 잘 일치하였다.

  • PDF

Fluctuation of Solid-Liquid Interface of Faceted Phase and Nonfaceted Phase by Periodic Temperature Variation

  • Oh, Sung-Tag;Kim, Young Do;Song, Young-Jun;Suk, Myung-Jin
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.644-648
    • /
    • 2016
  • In order to examine how the solid-liquid interface responds to temperature variation depending on the materials characteristics, i.e. faceted phase or nonfaceted phase, the moving solid-liquid interface of transparent organic material, as a model substance for metallic materials (pivalic acid, camphene, salol, and camphor-50wt% naphthalene) was observed in-situ. Plots of the interface movement distance against time were obtained. The solid-liquid interface of the nonfaceted phase is atomically rough; it migrates in continuous mode, giving smooth curves of the distance-time plot. This is the case for pivalic acid and camphene. It was expected that the faceted phases would show different types of curves of the distance-time plot because of the atomically smooth solid-liquid interface. However, salol (faceted phase) shows a curve of the distance-time plot as smooth as that of the nonfaceted phases. This indicates that the solid-liquid interface of salol migrates as continuously as that of the nonfaceted phases. This is in contrast with the case of naphthalene, one of the faceted phases, for which the solid-liquid interface migrates in "stop and go" mode, giving a stepwise curve of the distance-time plot.

Fe기 MA956 산화물분산강화합금의 천이액상확산접합에 관한 연구 (Transient-Liquid-Phase Bonding of Fe-Base MA956 ODS Alloy)

  • 강지훈
    • 한국분말재료학회지
    • /
    • 제2권1호
    • /
    • pp.53-62
    • /
    • 1995
  • TLP(Transient-Liquid-Phase) bonding of Fe-base MA956 ODS alloy was performed. As insert metal a commercially available Ni-base alloy(MBF50) and an MA956 alloy with additive elements of 7wt% Si and 1wt% B were used. To confirm the idea that a concurrent use of MA956 powder with Insert metals can enhance the homogenization of constituent elements and thereby reduce the thickness of joint interface, MA956 powder was also inserted In a form of sheet. SEM observation and EDS analysis revealed that Cr-rich phase was formed in the bonded interface in initial stage of isothermal solidification during the bonding process, irrespective of kind of insert metals. Measurement of hardeness in the region of bonded interface and EDS analysis showed that a complete homogenization of composition could not be obtained especially in case of MBF50. Joints using either BSi insert metals only or BSi insert together with MA956 powder interlayer showed, however, a remarkable improvement in a compositional homogenization, even though a rapid grain growth in the bonded interface could not be hindered.

  • PDF

A Consideration on Segregation Process of Dopant at WC/Co and WC/WC Interfaces in VC Doped WC-Co Submicro-grained Hardmetal

  • Kawakami, Masaru;Terada, Osamu;Hayashi, Koji
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.334-335
    • /
    • 2006
  • WC/WC interface in VC mono-doped WC-10mass%Co submicro-grained hardmetals of $0.5\;{\mu}m$ was investigated together with WC/Co interface by using HRTEM and XMA. The thickness of V-rich layer and the analytical value of V at WC/WC interface were almost the same as those at WC/Co interfaces. These results, etc., suggested that the V-rich layers at both interfaces were not generated by an equilibrium segregation mechanism in the sintering stage, but generated by a preferential precipitation mechanism during the solidification of Co liquid phase in the cooling stage. Based on this suggestion, we succeeded in developing a nano-grained hardmetal with 100 nm $(0.1\;{\mu}m)$.

  • PDF

DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구 (Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW)

  • 하려선;정병호;박화순
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.