• Title/Summary/Keyword: Solidification Interface

Search Result 105, Processing Time 0.023 seconds

Metallurgical Refinement of Multicrystalline Silicon by Directional Solidification (일방향 응고법에 의한 다결정 실리콘의 야금학적 정련)

  • Jang, Eunsu;Park, Dongho;Yu, Tae U;Moon, Byung Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • The solar energy is dramatically increasing as the alternative energy source and the silicon(Si) solar cell are used the most. In this study, the improved process and equipment for the metallurgical refinement of multicrystalline Si were evaluated for the inexpensive solar cell. The planar plane and columnar dendrite aheadof the liquid-solid interface position caused the superior segregation of impurities from the Si. The solidification rate and thermal gradient determined the shape of dendrite in solidified Si matrix solidified by the directional solidification(DS) method. To simulate this equipment, the commercial software, PROCAST, was used to solve the solidification rate and thermal gradient. Si was vertically solidified by the DS system with Stober process and up-graded metallurgical grade or metallurgical grade Si was used as the feedstock. The inductively coupled plasma mass spectrometry (ICP) was used to measure the concentration of impurities in the refined Si ingot. According to the result of ICP and simulation, the high thermal gradient between the two phases wasable to increase the solidification rate under the identical level of refinement. Also, the separating heating zone equipped with the melting and solidification zone was effective to maintain the high thermal gradient during the solidification.

  • PDF

Crystal Growth of Al-Cr and Al-Ti Peritectic Alloys by the Upward Continuous Casting Proces (상향식 연속주조법에 의한 Al-Cr 및 Al-Ti 2원계 포정합금의 결정성장)

  • Baeck, Seoung-Yil;Choi, Jong-Cheol;Shin, Hyun-Jin;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 1992
  • Directional solidification of Al-Ti peritetic alloys was carried out using Upward Continuous Casting Process. The morphology of a solid-liquid interface and solidification microstructures were investigated under various crystal growing conditions. The experimental results were compared with those attained by the Bridgman method. The cell spacing of the Al-Ti peritetic alloys and the primary dendrite arm spacing of the Al-Ti peritetic alloys decreased with an increase in pulling speed. The primary ${\beta}$ phase of the Al-Cr and Al-Ti peritectic alloys did not appear in solidification microstructures because of the depleted solute contents in the melt ahead of the solid-liquid interface.

  • PDF

A Study of Carbide Thapping and Growth in the Directional Solidification of MAR-M247 LC Super alloy (Ni기 초내열합금의 일방향 응고에서 탄화물의 Trapping과 성장 거동)

  • Lee, Jae-Hyeon;Jin, Geon;Lee, Yong-Tae;Choe, Seung-Ju
    • 연구논문집
    • /
    • s.26
    • /
    • pp.95-102
    • /
    • 1996
  • The carbide growth behavior of MAR-M247 LC alloy was investigated by directional solidification and quench method. The carbide volume fraction, trapping and growth behavior were correlated with the growth rate. It was found that the carbide volume fraction decreases at slower growth rate. This decreasing was caused by lower solid-liquid interface trapping ability at the slower growth rate.

  • PDF

A Study on the Two-Dimensional Phase Change Problem in a Rectangular Mold with Air-Gap Resistance to Heat Flow (공기층 저항을 고려한 사각형 주형내에서의 2차원 상변화문제에 관한 연구)

  • 여문수;손병진;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1205-1215
    • /
    • 1992
  • The solidification rate is of special importance in determining the casting structures and properties. The heat transfer characteristics at the interface between the mold and the casting is one of the major factors that control the solidification rate. The thermal resistance exists due to the air-gap formation at the mold/casting interface during the freezing process. In this study two-dimensional Stefan problem with air-gap resistance in the rectangular mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method. The effects of the major parameters, such as mold geometry, thermal conductivity, heat transfer coefficient, and initial temperature of casting, on the thermal characteristics are investigated.

Solidification Phenomena of Al-4.5wt.% Cu Alloy under Moderate Pressures (고압하에서의 Al-4.5wt.%Cu합금의 응고현상)

  • Cho, In-Sung;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.156-163
    • /
    • 1995
  • Solidification of aluminum alloys under moderate pressures has been investigated. Interfacial heat transfer coefficient at the casting/mold interface varies with time after pouring the molten metal into the die cavity, and therefore plays an important role in determining solidification sequence. The heat transfer coefficients were evaluated by using an inverse problem method, based on the measured temperature distribution. The calculated heat transfer coefficients were used for solidification simulation in the squeeze casting process. The effects of applied pressure and positions of insulation in the mold have also been investigated on solidification microstructures and on the formation of macrosegregation of Al-4.5wt.%Cu alloys.

  • PDF

Dendrite Arm Spacing and Carbide Morphology with Thermal Gradient and Solidification Rate in Directionally Solidified Ni-Base Superalloy (일방향 초내열합금에서 응고속도 및 온도구배 따른 수지상간격 및 탄화물 형상 변화)

  • Son, S.D.;Kim, Y.H.;Choi, G.S.;Lee, J.H.;Seo, S.M.;Jo, C.Y.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • The effects of thermal gradient and solidification rate on the dendrite arm spacing and carbide morphology were investigated in directionally solidified Ni-base superalloy, CM 247LC. Thermal gradient was controlled by changing the position of the cold chamber and the furnace set temperature. The interface morphology changed from the planar to dendritic as increasing solidification rate. It was found that the dendrite spacing decreased as increasing the thermal gradient as well as the solidification rate. Also, as increasing solidification rate, carbide morphology changed from blocky shape to script and spotty shapes.

Investigation of γ/γ' Growth by Macro Segregation in the Ni-Base Single Crystal Superalloy, CMSX-10 (CMSX-10 단결정 초내열합금에서 거시편석에 따른 γ/γ' 응고조직 형성)

  • Yoon, Hyeyoung;Sung, Changhoon;Shin, Jongho;Han, Seong Zeon;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.435-441
    • /
    • 2015
  • The ${\gamma}/{\gamma}^{\prime}$ two-phases, commonly known as a eutectic structure, are observed in the ${\gamma}$ interdendritic region of a Ni-base superalloy. However, the growth behavior of the ${\gamma}/{\gamma}^{\prime}$ two-phases, whether it is of eutectic or peritectic nature, has not been decidedly established. Directional solidifications were, thus, performed with the planar interface at a low growth rate of $0.5{\mu}m/s$ in order to promote macro segregation. Directional solidification started with the ${\gamma}$ planar interface and the ${\gamma}^{\prime}$ phase nucleated on the ${\gamma}$ planar interface at the solidification fraction of 0.75. The ${\gamma}/{\gamma}^{\prime}$ two-phases showed the ${\gamma}^{\prime}$ rod structure as major phase and the ${\gamma}$ minor phase between ${\gamma}^{\prime}$ rods, and the volume fraction of the ${\gamma}$ phase changed continuously with an increasing solidification fraction. The two-phase ${\gamma}/{\gamma}^{\prime}$ is seen as the coupled peritectic.

PHASE FIELD MODELING OF CRYSTAL GROWTH

  • Sekerka, Robert F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.139-156
    • /
    • 1996
  • The phase field model is becoming the model of choice for the theoretical study of the morphologies of crystals growth from the melt. This model provides an alternative approach to the solution of the classical (sharp interface) model of solidification by introducing a new variable, the phase field, Ø, to identify the phase. The variable Ø takes on constant values in the bulk phases and makes a continuous transition between these values over a thin transition layer that plays the role of the classically sharp interface. This results in Ø being governed by a new partial differential equation(in addition to the PDE's that govern the classical fields, such as temperature and composition) that guarantees (in the asymptotic limit of a suitably thin transition layer) that the appropriate boundary conditions at the crystal-melt interface are satisfied. Thus, one can proceed to solve coupled PDE's without the necessity of explicitly tracking the interface (free boundary) that would be necessary to solve the classical (sharp interface) model. Recent advances in supercomputing and algorithms now enable generation of interesting and valuable results that display most of the fundamental solidification phenomena and processes that are observed experimentally. These include morphological instability, solute trapping, cellular growth, dendritic growth (with anisotropic sidebranching, tip splitting, and coupling to periodic forcing), coarsening, recalescence, eutectic growth, faceting, and texture development. This talk will focus on the fundamental basis of the phase field model in terms of irreversible thermodynamics as well as it computational limitations and prognosis for future improvement. This work is supported by the National Science Foundation under grant DMR 9211276

  • PDF

Heat Transfer Analysis on the Rapid Solidification Process of Atomized Metal Droplets (분무된 금속액적의 급속응고과정에 관한 열전달 해석)

  • 안종선;박병규;안상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2404-2412
    • /
    • 1994
  • A mathematical model has been developed for predicting kinematic, thermal, and solidification histories of atomized droplets during flight. Liquid droplet convective cooling, recalescence, equilibrium-state solidification, and solid-phase cooling were taken into account in the analysis of the solidification process. The spherical shell model was adopted where the heterogeneous nucleation is initiated from the whole surface of a droplet. The growth rate of the solid-liquid interface was determined from the theory of crystal growth kinetics with undercooling caused by the rapid solidification. The solid fraction after recalescence was obtained by using the integral method. The thermal responses of atomized droplets to gas velocity, particle size variation, and degree of undercooling were investigated through the parametric studies. It is possible to evaluate the solid fraction of the droplet according to flight distance and time in terms of a dimensionless parameter derived from the overall energy balance of the system. It is also found that the solid fraction at the end of recalescence is not dependent on the droplet size and nozzle exit velocity but on the degree of subcooling.

The Solidification Characteristics of Styronaphthalene Pattern Materials (스티로나프타린 모형재료의 응고특성)

  • Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.47-51
    • /
    • 2003
  • This experimental study was carried out to investigate the solidification characteristics of polystyrene added styronaphthalene pattern materials using various castability test methods. The styronaphthalene showed an excellent filling capacity and shaping behavior having about 0.2 mm meniscus radius. The shell thickness of styronaphthalene showing smooth wall at the solid/liquid interface increased with the increasing of polystyrene addition. The solidification microstructure of styronaphthalene showed a typical thin ribbon reinforced composite structure, which has fibrous amorphous skeleton of polystyrene and crystalline naphthalene. From the results of this study, it was found that the polystyrene added styronaphthalene showed a precision shaping behavior as disposable pattern material under the atmospheric condition.