• Title/Summary/Keyword: Solidification/Stabilization (S/S)

Search Result 29, Processing Time 0.021 seconds

FIXATION OF LEAD CONTAMINANTS IN Pb-DOPED SOLIDIFIED WASTE FORMS

  • Lee, Dong-Jin;Chung, David;Hwang, Jong-Yeon;Choi, Hyun-Jin
    • Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.101-108
    • /
    • 2007
  • Fixation of lead contaminants in the solidification/stabilization using Portland cement has been investigated by X-ray diffraction, scanning electron microscopy and compressive strength. The presence of lead was observed to produce lead carbonate sulfate hydroxide ($Pb_4SO_4(CO_3)_2(OH)_2$), lead carbonate hydroxide hydrate ($3PbCO_3{\cdot}2Pb(OH)_2{\cdot}H_2O$) and two other unidentified lead salts in cavity areas and was observed to significantly retard the hydration of cement. By 28 days, howevere, the XRD peaks of most of the lead precipitates have essentially disappeared with only residual traces of lead carbonate sulfate hydroxide and lead carbonate hydroxide hydrate evident. After 28 days of curing, hydration appears well advanced with a strong portlandite peak present though C-S-H gel peaks are not particularly evident. Lead species produced with the dissolution of lead precipitates are fixed into the cement matrix to be calcium lead silicate hydrate (C-Pb-S-H) during cement-based solidification.

solidification/Stabilization of Hazardous Wasted Using Cementitious Material(I) (특수시멘트 고화재를 이용한 지정폐기물의 고형화/안정화(I))

  • Lim, C.Y.;Paik, S.H.;Um, T.S.;Choi, L.;Oh, B.H.;Lee, K.H.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.205-210
    • /
    • 2000
  • This study concerns the cement-solidification. stabilization of the electric furnace dust. Compressive strength and leaching test of heavy metals were evaluated for varing types and ratios of cements and the effect of some additives of hauyne clinker and slag were also discussed. In this cases of using cement binders more than 30%, the compressive strength showed the values over 150kgf/cm2. so it can be used as filler for concrete precastings. Type III cement and Hauyne clinker improved the compressive strength, especially early strength. Leaching amount of heavy metals was decreased when using type III cement and adding hauyne clinker and slag. The values were especially low in the case of slag addition.

  • PDF

CHROMIUM LEACHABILITY FROM STABILIZED/SOLIDIFIED SOILS UNDER MODIFIED SEMI-DYNEMIC LEACHING CONDITIONS

  • Moon, Deok-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.294-305
    • /
    • 2005
  • The effectiveness of fly ash-, quicklime-, and quicklime-fly ash-based stabilization/solidification(S/S) in chromium(Cr) contaminated soils was investigated using modified semi-dynamic leaching tests. Artificial soil samples composed of kaolinite or montmorillonite contaminated with chromium nitrate(4000 mg $Cr^{3+}\;kg^{-1}$ of solid) were prepared and then subjected to S/S treatment using quicklime, fly ash, or quick lime-fly ash. The effectiveness of the treatment was evaluated by assessing the cumulative fraction of leached $Cr^{3+}$ as well as, by computing the effective diffusivity ($D_e$) and the leachability index (LX) of the treated samples. The reduction in $Cr^{3+}$ release for the untreated samples was more pronounced in the presence of montmorillonite, which was attributed to sorption. Treatment with quicklime, fly ash, or quick lime-fly ash was significantly effective in reducing $Cr^{3+}$ release most probably due to the formation of pozzolanic reaction products and $Cr(OH)_3$ precipitation. The most effective treatment was observed in montmorillonite-sand soil samples treated with quicklime-fly ash (99.8% removal). The mean $D_e$ decreased significantly and the mean LX was greater than 9 for all treated samples, indicating that the treated soils were acceptable for "controlled utilization". The mechanism controlling $Cr^{3+}$ leaching from all treated samples during the first 5 days appeared to be diffusion.

LEAD LEACHABILITY FROM QUICKLIME TREATED SOILS IN A DIFFUSION CONTROLLED ENVIRONMENT

  • Moon, Deok-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.112-121
    • /
    • 2005
  • The effectiveness of quicklime-based stabilization/solidification (S/S) in immobilizing lead (Pb) was assessed by performing semi-dynamic leaching tests (ANS16.1). In order to simulate landfill leaching conditions, the ANS 16.1 test was modified by using 0.014 N acetic acid (pH = 3.25) instead of distilled water. Artificial soil samples as well as field soil samples contaminated with Pb were tested. The effectiveness of quicklime treatment was evaluated by determining diffusion coefficients ($D_e$) and leachability indices (LX). A model developed by de Groot and van der Sloat was used to elucidate the controlling Pb leaching mechanisms. Overall, upon quicklime treatment Pb leachability was significantly reduced in a]l of the samples tested. The mean LX values were higher than 9 for an artificial soil sample containing 30% kaolinite treated with 10% quicklime and for a field soil sample treated with 10% quicklime, which suggests that S/S treated soils can be considered acceptable for "controlled utilization". Moreover, quicklime treatment was more effective in artificially contaminated soil with high kaolinite content (30%), indicating the amount of clay plays an important role in the success of the treatment. The controlling Pb leaching mechanism was found to be diffusion, in all quicklime treated samples.

Solidification/Stabilization of Arsenic Contaminated Soil Using Cement-Based Synthesized Materials (시멘트계 합성물질을 이용한 비소 오염 토양의 고형화/안정화)

  • Kim, Ran;YHong, Seong Hyeok;Jung, Bahng Mi;Chae, Hee Hun;Park, Joo Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.59-65
    • /
    • 2012
  • Solidification/Stabilization(S/S) is one of the remediation technologies that have been applied for treating inorganic hazardous wastes. This study investigated the reduction of arsenic concentration of arsenic-contaminated soil using by S/S. The binder plays a role in controlling the mobility and solubility of the contaminants in S/S process, so it is important to determine the optimum binder content. Therefore, this study evaluated the effectiveness of S/S using four different binders(cement, zero valent iron, and monosulfate and ettringite(cement-based synthesized materials) at the binder content ranged between 5%(wt.) and 20%(wt.). The leachability of arsenic in 1 N HCl was different depending on the types of binders: cement(71.41%) > monosulfate(47.45%) > ettringite(46.36%) > ZVI(33.08%) at the binder content of 20%. Additionally, three kinds of a mixture binder were prepared using cement and additives(monosulfate, ettringite, calcium sulfoaluminate(CSA)) and tested for arsenic reduction. The highest arsenic removal capacity was found at the mass ratio of cement to the additive, 4:1 in all experiments using a mixture binder, regardless of the additives types. A mixture binder(cement and additives) resulted in higher arsenic removal relative to the arsenic removal when cement was used alone.

Evaluation of the Performance of Multi-binders (lime, DAP and ladle slag) in Treating Metal(loid)s-contaminated Soils (중금속류 오염 토양 처리를 위한 복합 고화제(lime, DAP, 래들 슬래그) 성능 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.955-966
    • /
    • 2017
  • Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

Lime based stabilization/solidification (S/S) of arsenic contaminated soils

  • Moon, Deok-Hyun
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.51-62
    • /
    • 2004
  • Lime based stabilization/solidification (S/S) can be an effective remediation alternative for the immobilization of arsenic (As) in contaminated soils and sludges. However, the exact immobilization mechanism has not been well established, Based on previous research, As immobilization could be attributed to sorption and/or inclusion in pozzolanic reaction products and/or the formation of calcium-arsenic (Ca-As) precipitates. In this study, suspensions of lime-As were studied in an attempt to elucidate the controlling mechanism of As immobilization in lime treated soils. Aqueous lime-As suspensions (slurries) with varying Ca/As molar ratios (1:1, 1.5:1, 2:1, 2.5:1 and 4:1) were prepared and soluble As concentrations were determined. X-ray diffraction (XRD) analyses were used to establish the resulting mineralogy of crystalline precipitate formation. Depending on the redox state of the As source, different As precipitates were identified. When As (III) was used, the main precipitate formation was Ca-As-O. With As(V) as the source, Ca4(OH)2(AsO4)2${\cdot}$4H2O formed at Ca/As molar ratios greater than 1:1. A significant increase in As (III) immobilization was observed at Ca/As molar ratios greater than 1:1. Similarly, a substantial increase in As (V) immobilization was noted at Ca/As molar ratios greater than or equal to 2.5: 1. This observation was also confirmed by XRD. The effectiveness of both As (III) and As(V) immobilization in these slurries appeared to increase with increasing Ca/As molar ratios.

  • PDF