• Title/Summary/Keyword: Solid-solid interface

Search Result 695, Processing Time 0.031 seconds

Crystal Growth of LiNbO3 for SAW Devices (SAW Device 응용을 위한 LiNbO3 단결정 성장)

  • 최종건;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.78-82
    • /
    • 1988
  • Good quality LiNbO3 single crystals which can be applied to SAW devices, were grown by Czochralski method. It was observed that the gas-bubbles were concentrated in ring shape at the outer part of grown crystals, and this anomaly was illustrated by modeling the mechanism of gas-bubble entrapment according to the melt flow pattern in the crucible. And this mechanism was also encertained by observation of solid-liquid interface shape of grown crystals. The optimal condition for good quality crystals was known that the solid-liquid interface shape was slightly concave.

  • PDF

A Study on the Tree Growth by Interface Type of XLPE (XLPE의 계면형태에 따른 트리성장에 관한 연구)

  • 김철운;김영민;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.111-115
    • /
    • 1997
  • There exists a interface among the different kinds of materials in the solid insulating ones, which effects on the insulating capability heavily. The insulating construction has been developed for each usages and take themselves into several sorts. The conjunction between CV cables have the electrical weakness of solidity and solid interface, so they were focused at the long distance-line. To this background, it is very important to get the information on the interface influencing on the insulating capability of cable and to observe its procedure. In this paper, the interface was made artificially to research the effect owing to the toughness of interface, which results in the aging and treeing proceeding was observed. The polyethylen, as is generally using for the cable, was taken in this research.

  • PDF

재질이 변압기 절연유의 유동대전에 미치는 영향

  • 곽희로;김재철;김두석;권동진
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.3
    • /
    • pp.72-77
    • /
    • 1991
  • In a large power transformer, insulating oil is forced to circulate for cooling the heat generated by the losses within windings and core. When insulating oil flows and rubs against various materials, such as insulating paper or core, the electrostatic charges are separated at the interface of the oil and the solid material. This paper considers the streaming electrification of various materials used in the transformer. In this study, we show that a solid material such as paper is negatively charged. On the other hand, a solid material such as core is positively charged.

  • PDF

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

A Study on the Mechanical Properties of the Friction Welding with Hollow and Solid Shaft of SM45C (SM45C의 중실축과 중공축의 마찰용접 특성에 관한 연구)

  • Koo, Keon-Seop;Choe, Won-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.841-846
    • /
    • 2010
  • The present study examined the mechanical properties of the friction welding with hollow and solid shaft of SM45, of which the diameter is 25.2mm and 33mm. Friction welding was conducted at welding conditions of 2,000rpm, friction pressure of 50MPa, upset pressure of 70MPa, friction time of 0.4sec to 1.4sec by increasing 0.2sec, upset time of 2.0 sec including variable such as friction time are following. Under these conditions, a tensile test, a hardness test and a microstructure of weld interface were studied. The results were as follows : When the friction time was 1.0 seconds under the conditions, the maximum tensile strength of the friction weld happened to be 1,094MPa, which is 120% compared with the tensile strength of SM45C base metal. The upset length linearly increased as friction time increased. According to the hardness test, the hardness distribution of the weld interface was formed from 475Hv to 739Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 2mm of SM45C.

Measurement of Peltier Heat at the Solid/Liquid Interface and Its Application to Crystal Growth II : Measurement and Application (고/액 계면에서의 Peltier 열 측정 및 결정성장에의 응용 II : 측정과 응용)

  • Kim, Il-Ho;Jang, Kyung-Wook;Lee, Dong-Hi
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1112-1116
    • /
    • 1999
  • Thermoelectric effects on the temperature changes at the solid- and liquid-phase and its interface were studied by using the unidirectional solidification of $\textrm{Bi}_{2}\textrm{Te}_{3}$. Cooling or heating effects measured with current density. polarity and current passing time were quite different. By separating sole Peltier, Thomson and Joule heat theoretically and experimentally, the Peltier coefficient at the solid/liquid interface of $\textrm{Bi}_{2}\textrm{Te}_{3}$ was -1.10$\times\textrm{10}^{-1}$V, and the Thomson coefficients of solid- and liquid-phase were 7.31\times\textrm{10}^{-4}V/K, 5.77\times\textrm{10}^{-5}V/K, respectively. When D.C. passed from solid-phase to liquid-phase during the crystal growth of $\textrm{Bi}_{2}\textrm{Te}_{3}$ the crystal with more directionality was obtained owing to increase of the temperature gradient in liquid by the Peltier cooling. But in reverse current direction, the crystallinity was not changed significantly.

  • PDF

An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem (비점성 평면 정체 유동 응고 문제에 대한 점근적 해석)

  • Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

Molecular Dynamics Simulation for Bilayers of Alkyl Thiol Molecules at Solid-Solid Interfaces

  • 이송희;김한수;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1047-1054
    • /
    • 1998
  • We present the results of molecular dynamics simulations for three different systems of bilayers of long-chain alkyl thiol [S(CH2)15CH3] molecules on an solid-solid interface using the extended collapsed atom model for the chain-molecule. It is found that there exist two possible transitions: a continuous transition characterized by a change in molecular interaction between sites of different chain molecules with increasing area per molecule and a sudden transition from an ordered lattice-like state to a liquid-like state due to the lack of interactions between sites of chain molecules on different surfaces with increasing distance between two solid surfaces. The third system displays a smooth change in probability distribution characterized by the increment of gauche structure in the near-tail part of the chain with increasing area per molecule. The analyses of energetic results and chain conformation results demonstrate the characteristic change of chain structure of each system.

Research progress of oxide solid electrolytes for next-generation Li-ion batteries (차세대 리튬이차전지를 위한 산화물 고체전해질의 연구동향)

  • Kang, Byoungwoo;Park, Heetaek;Woo, Seungjun;Kang, Minseok;Kim, Abin
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.349-365
    • /
    • 2018
  • Since the electrification of vehicles has been extended, solid-state batteries have been attracting a lot of interest because of their superior safety. Especially, polymer, sulfide, and oxide based materials are being studied as solid electrolytes, and each type of materials has advantaged and disadvantages over others. Oxide electrolytes has higher chemical and electrochemical stability compared to the other types of electrolytes. However, ionic conductivity isn't high enough as much as that of organic liquid electrolytes. Also, there are many difficulties of fabricating solid-state batteries with oxide based electrolytes because they require a sintering process at very high temperature (above ${\sim}800^{\circ}C$). Herein, we review recent studies of solid-state batteries with oxide based electrolytes about the ionic conductivity, interfacial reactions with Li metal, and preparation of solid-state cell.

A Study for Estimation of the Surface Temperature Rise Using the FVM and Semi-Infinite Solid Analysis (FVM과 반무한체 해석을 이용한 표면온도예측에 관한 연구)

  • 김태완;이상돈;조용주
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.389-395
    • /
    • 2002
  • The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. The calculation of the surface temperature at a sliding contact interface has been an interesting and important subject for tribologist. Temperature analyses were usually performed under the consideration contacted two bodies as semi-infinite. But the analysis was difficulty in being applied to finite body and considering the boundary condition. In this study, contact temperature rise of two finite bodies and surfaces due to frictional heating under the rectangular and the circular sliding contact is calculated. Heat partition factor is calculated using semi-infinite solid analysis and the temperature of the finite bodies is calculated using FVM. It will be shown that Most frictional heat in the fore part of contact region for sliding direction is conducted into body that has a moving heat source and the site of the maximum temperature rise moves to the opposite direction of sliding during sliding.