• Title/Summary/Keyword: Solid-phase microextraction (SPME)

Search Result 167, Processing Time 0.022 seconds

Comparison of Flavor Compounds in Steamed- and Nonsteamed-Roasted Polygonatum odoratum Roots by Solid-Phase Microextraction (Solid-Phase Microextraction(SPME)을 이용한 둥굴레차의 증자 여부에 따른 향기성분 특성 비교)

  • Park, Nan-Young;Seo, Ji-Hyung;Kim, Young-Hoi;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.507-512
    • /
    • 2000
  • The headspace flavors of roasted tea, prepared with steamed and nonsteamed polygonatum roots, were absorbed in solid-phase microextraction(SPME) fiber coated with $65\;{\mu}m$ of carbowax/divinylbenzene(CW/DVB) and analysed by GC-MS. The absorption conditions of SPME fiber for equilibrated headspace were selected as $60^{\circ}C$ and 30 min. In a comparison for both samples roasted at $130^{\circ}C$ for 15 min, gas chromatograms showed a similar pattern in overall profiles between steamed and nonsteamed samples before roasting, but some differences were observed in peak characteristics. From 40 separated peaks, 25 compounds were identified with both GC-MS and retention time comparison. The pyrazines including 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, 2-acetyl-1-pyrroline, etc. were higher in their contents in nonsteamed-roasted sample than steamed-roasted one. In particular, steamed-roasted polygonatum showed higher contents of acetic acid(8.17%) and hexanoic acid(5.43%) than the corresponding compounds of nonsteamed-roasted one, 2.40% and 2.00%.

  • PDF

Evaluation of Volatile Compounds Isolated from Pork Loin (Longissimus dorsi) as Affected by Fiber Type of Solid-phase Microextraction (SPME), Preheating and Storage Time

  • Park, Sung-Yong;Yoon, Young-Mo;Schilling, M. Wes;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.579-589
    • /
    • 2009
  • This study was conducted to investigate the effects of heating, fiber type used in solid-phase microextraction (SPME, two phase vs three phase) and storage time on the volatile compounds of porcine M. longissimus dorsi (LD). Volatile compounds were measured using a gas chromatography and mass spectrometry (GC/MS) with a quadrupole mass analyzer. Among the volatile compounds identified, aldehydes (49.33%), alcohols (24.63%) and ketones (9.85%) were higher in pre-heated loins ($100^{\circ}C$/30 min), whereas, alcohols (34.33%), hydrocarbons (22.84%) and ketones (16.88%) were higher in non-heated loins. Heating of loins induced the formation of various volatile compounds such as aldehydes (hexanal) and alcohols. The total contents of hydrocarbons, alcohols, and carboxylic acids were higher in two phase fibers, whereas those of esters tended to be higher in three-phase fibers (p<0.05). Most volatile compounds increased (p<0.05) with increased storage time. Thus, the analysis of volatile compounds were affected by the fiber type, while heating and refrigerated storage of pork M. longissimus dorsi increased the volatile compounds derived from lipid oxidation and amino acid catabolism, respectively.

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry

  • Yang, Ji-Su;Lee, Hae-Won;Song, Hyeyeon;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.

Volatile Compounds for Discrimination between Beef, Pork, and Their Admixture Using Solid-Phase-Microextraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS) and Chemometrics Analysis

  • Zubayed Ahamed;Jin-Kyu Seo;Jeong-Uk Eom;Han-Sul Yang
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.934-950
    • /
    • 2024
  • This study addresses the prevalent issue of meat species authentication and adulteration through a chemometrics-based approach, crucial for upholding public health and ensuring a fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-phase-microextraction-gas chromatography-mass spectrometry. Adulterated meat samples were effectively identified through principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance in projection scores and a Random Forest test, 11 key compounds, including nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with the first two components capturing 80% and 72.1% of total variance, respectively. This technique could be a reliable method for detecting meat adulteration in cooked meat.

Comparative Analyses of the Flavors from Hallabong (Citrus sphaerocarpa) with Lemon, Orange and Grapefruit by SPTE and HS-SPME Combined with GC-MS

  • Yoo, Zoo-Won;Kim, Nam-Sun;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.271-279
    • /
    • 2004
  • The aroma component of Hallabong peel has been characterized by GC-MS with two different extraction techniques: solid-phase trapping solvent extraction (SPTE) and headspace solid-phase microextraction (HSSPME). Aroma components emitted from Hallabong peel were compared with those of other citrus varieties: lemon, orange and grapefruit by SPTE and GC-MS. d-Limonene (96.98%) in Hallabong was the main component, and relatively higher peaks of cis- ${\beta}$-ocimene, valencene and -farnesene were observed. Other volatile aromas, such as sabinene, isothujol and ${\delta}$-elemene were observed as small peaks. Also, principal components analysis was employed to distinguish citrus aromas based on their chromatographic data. For HSSPME, the fiber efficiency was evaluated by comparing the partition coefficient ($K_{gs}$Kgs) between the HS gaseous phase and HS-SPME fiber coating, and the relative concentration factors (CF) of the five characteristic compounds of the four citrus varieties. 50/30 ${\mu}$m DVB/CAR/PDMS fiber was verified as the best choice among the four fibers evaluated for all the samples.

Analysis of Haloacetonitriles in Drinking Water Using Headspace-SPME Technique with GC-MS (Handspace Solid Phase Microextraction 방법에 의한 HANs 분석에 관한 연구)

  • Cho, Deok-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.628-637
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of disinfection by-products (DBPs) such as haloacetonitriles (HANs), trihalomethanes (THMs), haloacetic acids (HAAs). In this study, headspace-solid phase microextraction (HS- SPME) technique was applied for the analysis of HANs in drinking water. The effects of experimental parameters such as selection of SPME fiber, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and detection limits were also evaluated. The $50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were the optimal experimental conditions for the analysis of HANs. The correlation coefficients ($r^2$) for HANs was 0.9979~0.9991, respectively. The relative standard deviations (%RSD) for HANs was 2.3~7.6%, respectively. Detection limits (LDs) for HANs was $0.01{\sim}0.5{\mu}g/L$, respectively.

Preparation of Optimal Condition for Residual Pesticides Analysis by Solid-Phase Microextraction in Water (물중의 잔류농약 분석을 위한 SPME의 최적조건 선정에 관한 연구)

  • Jang, Mi Ra;Jeong, Hyo June;Lee, Hong Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.421-433
    • /
    • 2002
  • This study was conducted to develope a simple, rapid and solvent-free solid-phase microextraction(SPME) procedure for extracting three organochlorine, one triazine and nine organophosphorus pesticides from water. The optimal conditions of SPME for analyses of organochlorine pesticides were obtained at $250^{\circ}C$ of desorption temperature, 45 minutes of equilibrium time, pH 6 and NaCl 0% addition using $100{\mu}m$ polydimethylsiloxane fiber and those of triazine and organophosphorus pesticides were obtained at $270^{\circ}C$ of desorption temperature, 60 minutes of equilibrium time, pH 6 and NaCl 0% addition using $100{\mu}m$ polydimethylsiloxane fiber. This method showed good lineality for organochlorine pesticides between 0.0001 and $10{\mu}g/L$ with regression coefficients ranging 0.9986~0.9992 and for triazine and organophosphorus pesticides between 0.01 and $10{\mu}g/L$ with regression coefficients ranging 0.9867~0.9998.

Determination of the presence of benzene in vitamin drinks using headspace - solid phase microextraction and gas chromatography - mass spectrometry (Headspace Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry를 이용한 비타민드링크 제품 중 Benzene의 미량분석)

  • Kim, Jong-Hun;Lee, Kyung-Min
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 2007
  • The presence of benzene in 31 products of vitamin drinks purchased from 20 retail outlets was determined using headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The sample (25 ml) was stirred at 1200 rpm for 4 min using a magnetic bar with a $100{\mu}m$ SPME fiber as an adsorbent for benzene which was then desorbed from the fiber for 1 min in the GC injector. Quantitation was achieved using the standard addition method. The limit of detection was determined as 0.56 ng/ml and over a concentration range 0-40 ng/ml the coefficient of correlation was greater than 0.999. The concentration of benzene in the drinks examined was in the range not detectable to 47.35 ng/ml. Benzene was detected in 15 of the drinks with concentration in 5 of them greater than 10 ng/ml which is the limit set for the presence of benzene in the Drinking Water Regulations. The concentrations of benzene in the 5 drinks which exceeded the limit of 10 ng/ml were 16.99, 35.14, 16.03, 47.35 and 14.28 ng/ml respectively.

Determination of VOC in aqueous samples by the combination of headspace (HS) and solid-phase microextraction (SPME) (HS-SPME 방식에 기초한 물 중 VOC 성분의 분석기법에 대한 연구: 3가지 실험 조건의 변화와 분석감도의 관계)

  • Park, Shin-Young;Kim, Ki-Hyun;Yang, H.S.;Ha, Joo-Young;Lee, Ki-Han;Ahn, Ji-Won
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.93-101
    • /
    • 2008
  • The application of solid phase microextraction (SPME) is generally conducted by directly immersing the fiber into the liquid sample or by exposing the fiber in the head space (HS). The extraction temperature, the time of incubation, and application of stirring are often designated to be the most important parameters for achieving the best extraction efficiencies of HS-SPME analysis. In this study, relative importance of these three analytical parameters involved in the HS-SPME method is evaluated using a polydimethylsiloxane/carboxen (PDMS/CAR) fiber. To optimize its operation conditions the competing relationships between different parameters were investigated by comparing the extraction efficiency based on the combination of three parameters and two contracting conditions: (1) heating the sample at 30 vs. 50 C, (2) exposing samples at two durations of 10 vs. 30 min, and (3) application of stirring vs. no stirring. According to our analysis among 8 combination types of HS-SPME method, an extraction condition termed as S50-30 condition ((1) 1200 rpm stirring, (2) $50^{\circ}C$ exposure temp, and (3) 30 min exposure duration) showed maximum recovery rate of 45.5~68.5% relative to an arbitrary reference of direct GC injection. According to this study, the employment of stirring is the most crucial factor to improve extraction efficiency in the application of HS-SPME.

Analysis of Odorous Sulfur compounds in Air by Solid Phase Microextraction (대기중의 악취성 황화물분석을 위한 SPME 분석법)

  • 허귀석;김대원;윤영경;정용순
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.343-344
    • /
    • 2000
  • 대기중의 황화합물 분석은 현행 우리나라 악취공정시험법에 고시되어 있으나 복잡한 농축장치를 필요로하고 조작법이 복잡하고 시간이 많이 소요된다. 특히 황화합물은 주요 악취물질로서 대기오염을 일으키고 있으며, 극미량에서(ppb) 악취를 발생시키는 악취물질임에도 불구하고 분석방법 및 정확도에 많은 문제점을 갖고 있다. 본 연구에서는 황화물 시료농축이 간단하며, 직접 주입, 분석할 수 있는 SPME(Solid-phase microextraction)을 이용하여 황화물을 신속하게 분석할 수 있는 분석법을 개발하고 저 하였다. 분석방법에 대한 분석재현성, 분석한계를 조사하였으며, 이 분석방법이 대기중 황화물분석 방법으로 활용될 수 있도록 분석법을 확립하고자 하였다. (중략)

  • PDF