• Title/Summary/Keyword: Solid-acid catalyst

Search Result 94, Processing Time 0.021 seconds

Montmorillonite Clay Catalyzed Three Component, One-Pot Synthesis of 5-Hydroxyindole Derivatives

  • Reddy, B.V. Subba;Reddy, P. Sivaramakrishna;Reddy, Y. Jayasudhan;Bhaskar, N.;Reddy, B. Chandra Obula
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2968-2972
    • /
    • 2013
  • A highly efficient and environmentally benign protocol has been developed for the first time to produce a wide range of biologically active 5-hydroxyindole derivatives using montmorillonite KSF clay as a reusable solid acid catalyst. The use of recyclable clay makes this procedure quite simple, more convenient and cost-effective.

Catalytic Combustion of Methane over Perovskite-Type Oxides

  • Hong, Seong-Soo;Sun, Chang-Bong;Lee, Gun-Dae;Ju, Chang-Sik;Lee, Min-Gyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • Methane combustion over perovskite-type oxides prepared using the malic acid method was investigated. To enhance the catalytic activity, the perovskite oxides were modified by the substitution of metal into their A or B site. In addition, the reaction conditions, such as the temperature, space velocity, and partial pressure of the methane were varied to understand their effect on the catalytic performance. With the LaCoO3-type catalyst, the partial substitution of Sr or Ba into site A enhanced the catalytic activity in the methane combustion. With the LaBO3(B=Co, Fe, Mn, Cu)-type catalyst, the catalytic activities were exhibited in the order of Co>Fe Mn>Cu. Futhermore, the partial substitution of Co into site B enhanced the catalytic activity, whereas an excess amount of Co decreased the activity. The surface area and catalytic activity of the perovskite catalysts prepared using the malic acid method showed higher values than those prepared using the solid reaction method. The catalytic activity was enhanced with decreased methane concentration and with a decrease in the space velocity.

  • PDF

Dilute-acid pretreatment of rapeseed straw of using the combined severity (combined severity를 이용한 유체대의 묽은 산 전처리)

  • Jeong, Tae-Su;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.244.2-244.2
    • /
    • 2010
  • Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide into monomeric sugars. In this study, dilute sulfuric acid used as a catalyst for the pretreatment of rapeseed straw. Hydrolysis can be performed enzymatically, and with dilute or concentrate mineral acids. Dilute-acid hydrolysis of rapeseed straw was optimized through the utilization of combined severity. Evaluation criteria for optimization of the pretreatment conditions were based on high xylose recovery and low inhibitor contents in the hydrolyzates. In addition, this paper reports the compositional analysis of hydrolyzate liquors and solid residues, xylose and glucose mass balance closures, and digestibility results of the acid pretreated rapeseed straw.

  • PDF

Curing Behavior by Rotation Rheometer of Acrylic High-Solid Coatings (아크릴계 하이솔리드 도료의 Rotation Rheometer에 의한 경화거동 연구)

  • Yang, In-Mo;Jung, Choong-Ho;Kim, Tae-Ok;Park, Hong-Soo;Park, Eun-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • Curing reaction was carried out with the acrylic resin (ACR) [n-butyl acrylate/atyrene/2-hydroxyethyl methacrylate/acetoacetoxyethyl methacrylate (AAEM)] synthesized before and a curing agent, hexamethoxymethylmelamine (HMMM). With rotational rheometer, the effect of catalysts on curing rate of acrylic resin/melamine was examined. Among the four catalysts used, p-toluene sulfonic acid showed the highest reactivity, and the optimum amount of catalyst was 0.5 phr. It was observed that in the ACR/HMMM curing reaction, gelation point was lowered with the increasing the amount of AAEM and HMMM in the ACR.

Esterification of Free Fatty Acid in Biodiesel Feedstock by Sold Catalyst and Microwave Heating (고체촉매와 마이크로파 가열을 이용한 저품위 바이오디젤 원료의 자유지방산 제거)

  • Kim, Dae-Ho;Choi, Jin-Ju;Vijayan, M.T.;Jung, Sun-Shin;Park, Sung-Su;Lee, Kun-Dae;Kim, Bo-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.512-512
    • /
    • 2009
  • 본 연구는 자유지방산을 포함하고 있는 저품위 유지로부터 바이오디젤을 합성하는데 있어서 외부가열 방법 대신에 마이크로파를 이용한 내부 직접가열 방법으로 고체촉매 반응을 가속화한 연구에 관한 것이다. 대두유를 원료로 KOH 균일촉매를 이용한 전이에스테르화 실험에서는 섭씨 60도 상압조건에서 반응시간 3분에 95.4%의 전환율을 획득했다. 올레산과 고체산촉매를 이용한 자유지방산 제거 실험에서는 섭씨 60도 상압조건에서 solvent free 방식의 S-ZrO2는 반응시간 20분만에 93.7%의 제거율을 보였고 Rohm&Hass사의 Amberlyst-15dry 촉매는 반응시간 30분에 82.0%의 제거율을 보였다. 또한 바이오디젤 합성에 사용된 마이크로파의 총 에너지를 측정한 결과 외부가열 방법에 비해 약 1/3 수준임을 확인했다. 이것은 기존의 heat bath를 이용한 실험결과들과 비교할 때 반응속도가 약 10배 정도 향상되면서도 에너지효율이 높다는 것을 확인한 결과로서, 저품위 유지를 원료로 하는 바이오디젤 생산공정에서 마이크로파가 매우 효율적인 가열수단이 될 수 있음을 보여주었다.

  • PDF

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • 준기원;K.S. Rama Rao;정미희;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.466-470
    • /
    • 1998
  • Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.

Dimethyl Ether Formation Using a Zeolite Catalyst Impregnated with Ceria (세리아 첨가 제오라이트 촉매를 이용한 디메틸 에테르 합성)

  • Kim, Bo-Kyung;Koh, Jae-Cheon;Kim, Beom-Sik;Han, Myung-Wan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • Dimethyl ether draws an attention as a green fuel in recent years. In this study, we investigated dehydration of methanol to produce DME using solid-acid catalysts, a series of zeolite. We found that ceria took a role of promoting the reaction conversion as well as selectivity of DME formation as a cocatalyst to the zeolite catalyst. We varied Si/Al ratio and ceria percentage on the surface of the catalyst to get high performance catalyst. ZSM5-30 with 5 wt% ceria on the surface was found to have excellent DME selectivity and to be little influenced by water content in methanol feed. We proposed a reaction model and obtained kinetic parameters for the DME formation using the catalyst based on experimental results using a microreactor.

Physicochemical and Catalytic Properties of NiSO4/CeO2-ZrO2 Catalyst Promoted with CeO2 for Acid Catalysis

  • Sohn, Jong-Rack;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1265-1272
    • /
    • 2007
  • A solid acid catalyst, NiSO4/CeO2-ZrO2 was prepared simply by promoting ZrO2 with CeO2 and supporting nickel sulfate on CeO2-ZrO2. The support of NiSO4 on ZrO2 shifted the phase transition of ZrO2 from amorphous to tetragonal to higher temperatures because of the interaction between NiSO4 and ZrO2. The surface area of 10-NiSO4/1-CeO2-ZrO2 promoted with CeO2 and calcined at 600 oC was very high (83 m2/g) compared to that of unpromoted 10-NiSO4/ZrO2 (45 m2/g). This high surface area of 10-NiSO4/1-CeO2-ZrO2 was due to the promoting effect of CeO2 which makes zirconia a stable tetragonal phase as confirmed by XRD. The role of CeO2 was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity of the sample, and high thermal stability of the surface sulfate species. 10-NiSO4/1- CeO2-ZrO2 containing 1 mol% CeO2 and 10 wt% NiSO4, and calcined at 600 oC exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation.

Effect of Butadiene in Catalytic Trimerization of Isobutene Using Commercial C4 Feeds

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Lee, Ji-Sun;Kim, Tae-Jin;Lee, Hee-Du;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.57-60
    • /
    • 2008
  • Catalytic oligomerization of isobutene to produce triisobutenes has been performed over a cation-exchange resin (Amberlyst-35) by using commercial C4 feeds. The catalytic activity in the oligomerization was retained without deactivation up to 90 h of reaction in a simulated reaction feed without butadiene, but its activity was significantly affected by the presence of butadiene in commercial C4 feeds. The isobutene conversion with time-on-stream was significantly decreased in the presence of butadiene, indicating the catalyst deactivation by butadiene. However, the stable activity for trimerization was accomplished when the oligomerization was carried out after eliminating butadiene by hydrogenation of the feeds. This work demonstrates that butadiene plays a role as a catalyst poison on the solid acid catalyst, so that its removal in the reactant feed is essential for practical application of trimerization.

Production of Chemical Intermediate Furfural from Renewable Biomass Miscanthus Straw (재생가능한 바이오매스 자원인 억새로부터 화학중간체 푸르프랄의 생산)

  • Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.492-496
    • /
    • 2014
  • In this work, the possibility of Miscanthus as renewable lignocellulosic biomass was evaluated for production of furfural. Also, to find the reaction conditions of furfural production from Miscanthus straw, the effects of solid-to-liquid ratio, reaction temperature, catalyst amount, and reaction time were investigated. Finally, 5.1 g/L furfural was produced from Miscanthus straw in the condition of solid-to-liquid ratio at 1:10, reaction temperature at $150^{\circ}C$, sulfuric acid at 3%, and reaction time of 60 minutes. This result will provide basic knowledge for converting renewable resources into valuable chemicals substituted for fossil fuels.