• 제목/요약/키워드: Solid-State Synthesis

검색결과 355건 처리시간 0.021초

Effect of $Mg^{2+}$ co-doping on luminescent properties of $ZnGa_2O_4:Mn^{2+}$

  • Singh, Binod Kumar;Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • 반도체디스플레이기술학회지
    • /
    • 제6권4호
    • /
    • pp.29-32
    • /
    • 2007
  • Zinc gallate, $ZnGa_2O_4:Mn^{2+}$ co-doped with different concentrations of $Mg^{2+}$ (0.001- 0.5 mol%) was prepared by solid state synthesis method. These compositions were investigated for their photoluminescence and cathodoluminescence properties. The optimized composition $Zn_{0.990}Mg_{0.005}Ga_2O_4:Mn_{0.005}$ shows higher luminescence intensity compared to the parent phosphor. The intense green emission peak was found at 504 nm. The $Mg^{2+}$ doping does not affect much the decay time. It remains <10 ms for these compositions which make them potential candidate for application in TV screens.

  • PDF

Cr-doped Y2O3-Al2O3계 붉은 안료의 합성과 적용 (Synthesis of Cr-doped Y2O3-Al2O3 Red Pigments and their Application)

  • 신경현;이병하
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.453-458
    • /
    • 2008
  • New inorganic red pigments based on Cr-doped $Y_2O_3$ and $Al_2O_3$ were synthesized by solid state method and characterization of their pigments were characterized by using XRD, FT-IR, SEM and UV-Vis spectrophotometer. The single perovskite phase revealed at $1450^{\circ}C{\sim}1550^{\circ}C$ for 6 h due to using mineralizers. The color of pigment powders resulted out various red-shades depending on the compositions of used materials and temperatures. Glazed tiles painted with pigment powders showed red color in oxidation and reduction firing. The best red colour was obtained when the $Cr_2O_3$ was used 0.04 mole at $1450^{\circ}C$ for 6 h.

Synthesis of Alinite-Calciumchloroaluminate System Cement Using Solid State Waste

  • Cho, Jin-Sang;Han, Gi-Chun;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan;Lee, Hyoung-Ho
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.581-585
    • /
    • 2001
  • Alinite-Calciumchloroaluminate system clinker was synthesized from solid state waste. The raw materials were municipal incineration ash, sewage sludge, limestone and clay. ecocement was prepared by the mixing of synthesized clinker and optimum amount of gypsum and its hydrolysis characteristic was investigated. X-ray diffraction, conduction calorimeter and reflecting microscope were used to analyze structural and physical properties. The main phase of clinker were alinite, calcium chloroaluminate. $C_2$S, $C_3$S. From the results of hardening time, hydration reactivity of synthesized all samples was faster than that of ordinary portland cement.

  • PDF

Quasi-solid state electrolytes with silica nanomaterial for high efficiency dye-sensitized solar cells

  • Jeon, Semina;Lim, Jeongmin;Han, Chi-Hwan;Jun, Yongseok
    • Rapid Communication in Photoscience
    • /
    • 제2권3호
    • /
    • pp.85-88
    • /
    • 2013
  • Silica nanoparticles were synthesized with various silane coupling agents to make specific pathway of electrons and anti-recombination system when solidifying liquid electrolytes. In this study, we used an appropriate method of synthesis for activated silica nanoparticles and silane coupling agents with 3-(triethoxysilyl)propionitrile, Trimethoxy[3-(methylamino)propyl]silane, Triethoxyoctylsilane, and octadecyltrimethoxy silane. Dye-sensitized solar cells using solidified electrolytes with silica nanoparticles exhibit comparatively excellent efficiency, ranging from 2.3 to 7.0% under similar conditions.

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

착체중합법에 의한 저전압용 $Y_2$$O_3$: $Eu^{3+}$ 형광체 제조 (Synthesis of $Y_2$$O_3$:$^Eu{3+}$ Phosphor for Low-voltage by Polymerized Complex Method)

  • 류호진;박정규;박희동
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.801-806
    • /
    • 1998
  • $Eu^{3+}$ -doped $Y_2$$O_3$ phosphors has been prepared by a polymerized complex method and investigated their powder and luminescence properties. They were compared with phosphors prepared by a solid state reac-thion method. The phosphors synthesized have been characterized by X-ray diffraction low-voltage lu-minescent emission spectroscopy etc. Under low-voltage electron excitation $Eu^{3+}$-doped $Y_2$$O_3$ exhibited a strong narrow-band red emission peaking at 612nm. On the other hand the critical value for concentration quenching of sample prepared by the polymerized complex method fired at $1400^{\circ}C$ is x=0.05 for $(Y_{1-x}Eu_x__2O_3$ The emission intensity of phosphors prepared by the polymerized complex method was higher than that of phosphors prepared by the solid state reaction method.

  • PDF

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Nano-particles of Mechanochemical Synthesis

  • Urakaev, Farit Kh.
    • 동굴
    • /
    • 제71호
    • /
    • pp.5-11
    • /
    • 2006
  • A theoretical investigation of the solid phase mechanochemical synthesis of nano sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3 mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano TlCl by dilution of initial (2NaCl+$Tl_2SO_4$) mixture with the exchange reaction product (diluent,$zNa_2SO_4$, z=z*=11.25) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano TlCl obtained experimentally were compared with those for the model reaction KBr+TlCl+zKCl=(z+1) KCl+TlBr (z=z1*=13.5), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

상대적으로 낮은 온도에서의 고상법에 의한 망간이 도핑된 Zn2SiO4 형광체 입자의 제조 및 형광특성 (Synthesis of Mn-doped Zn2SiO4 phosphor particles by solid-state method at relatively low temperature and their photoluminescence characteristics)

  • 이진화;최성옥;이동규
    • 한국산학기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.228-233
    • /
    • 2010
  • Methyl hydrogen polysiloxne으로 처리한 ZnO, fumed $SiO_2$와 다양한 망간 전구체를 이용하여 서브마이크로미터 크기를 갖는 망간이 도핑된 $Zn_2SiO_4$ 형광체 입자를 고상법으로 제조하였다. 결정화와 광발광 특성은 XRD, SEM, PL스펙트라를 이용하여 분석하였다. 고상법으로 제조한 망간 도핑된 $Zn_2SiO_4$는 methyl hydrogen polysiloxne 처리한 ZnO의 분산과 응집 때문에 $1000^{\circ}C$에서 성공적으로 얻어졌고, 진공자외선 여기하에서 제조된 입자의 최대 PL강도는 0.02mol Mn, $1000^{\circ}C$에서 확인되었다.

Scale-Up of Polymerization Process of Biodegradable Polymer Poly(lactic acid) Synthesis Using Direct Polycondensation Method

  • Pivsa-Art, Sommai;Niamlang, Sumonman;Pivsa-Art, Weraporn;Santipatee, Nutchapon;Wongborh, Tossamon;Pavasupree, Sorapong;Ishimoto, Kiyoaki;Ohara, Hitomi
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.100-109
    • /
    • 2015
  • Environmental problems from petroleum-based plastic wastes have been rapidly increasing in recent years. The alternative solution is focus on the development of environmental friendly plastic derived from renewable resource. Poly(lactic acid) (PLA) is a biodegradable polymer synthesized from biomass having potential to replace the petroleum-based non-degradable polymers utilizations. PLA can be synthesized by two methods: (1) ring-opening of lactide intermediate and (2) direct polycondensation of lactic acid processes. The latter process has advantages on high yields and high purity of polymer products, materials handling and ease of process treatments. The polymerization process of PLA synthesis has been widely studied in a laboratory scale. However, the mass scale production using direct polycondensation of lactic acid has not been reported. We have investigated the kinetics and scale-up process of direct polycondensation method to produce PLA in a pilot scale. The order of reaction is 2 and activation energy of lactic acid to lactic acid oligomers is 61.58 kJ/mol. The pre-polymer was further polymerized in a solid state polymerization (SSP) process. The synthesized PLA from both the laboratory and pilot scales show the comparable properties such as melting temperature and molecular weight. The appearance of synthesized PLA is yellow-white solid powder.